
voor het bijwonen van

de openbare verdediging

van mijn proefschrift

“On run-time

exploitation of
concurrency”

op vrijdag 23 april 2010 om 13.00

in zaal 2 van gebouw Waaier

van de Universiteit Twente.

Aansluitend is er een receptie

in hetzelfde gebouw.

Phi l ip K.F. Hölzenspies

Marskant 96,

7551 BW Hengelo

06-47382727

holzensp@gmai l .com

ON RUN-TIM
E EXPLOITATION OF CONCURRENCY

PHILIP K. F. HÖLZENSPIES

Philip Hölzenspies received his Master’s

degree in Computer Science with honours

from the University of Twente in 2006. He

hopes to be awarded his doctorate degree

in the same field on April 23rd, 2010. The

work presented in this thesis was done in

the Computer Architectures for Embedded

Systems group of the CTIT Research Institute

at the same university.

In 2008, he was a visiting researcher with

the University of Hertfordshire in the United

Kingdom, where he worked on asynchronous

coordination language SNet. His research

interests include programming languages,

compilers and run-time systems.

omslag_Philip_2.indd 1omslag_Philip_2.indd 1 01-04-10 22:2401-04-10 22:24

thesis April 1, 2010 14:45 Page i ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

On run-time exploitation of concurrency

Philip K.F. Hölzenspies

thesis April 1, 2010 14:45 Page ii ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Members of the dissertation committee:

Prof. dr. ir. G.J.M. Smit University of Twente (promoter)

Prof. dr. J.L. Hurink University of Twente (promotor)

Dr. ir. J. Kuper University of Twente (assistant-promotor)

Prof. dr. ir. Th. Krol University of Twente

Prof. dr. J.C. van de Pol University of Twente

Prof. dr. A. Shafarenko University of Hertfordshire

Prof. dr. Ch. Jesshope University of Amsterdam

Prof. dr. ir. A.J. Mouthaan University of Twente (chairman and secretary)

Copyright © 2010 by Philip K.F. Hölzenspies, Hengelo, The Netherlands.

c
b
e

This work is licenced under the Creative Commons Atrribution-Non-Commercial

3.0 Netherlands License. To view a copy of this licence, visit the webpage

http://creativecommons.org/licenses/by-nc/3.0/nl/ or send a letter

to Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105,

usa.

Cover design by Diederik Telman. This thesis was printed by Gildeprint, The Netherlands.

ISBN 978-90-365-3021-7

DOI 10.3990/1.9789036530217

http://creativecommons.org/licenses/by-nc/3.0/nl/

thesis April 1, 2010 14:45 Page iii ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

On run-time exploitation of concurrency

Proefschrift

ter verkrijging van

de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,

prof. dr. H. Brinksma,

volgens besluit van het College voor Promoties

in het openbaar te verdedigen

op vrijdag 23 april 2010 om 13.15 uur

door

Philip Kaj Ferdinand Hölzenspies

geboren op 29 april 1980

te Houten

thesis April 1, 2010 14:45 Page iv ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Dit proefschrift is goedgekeurd door:

prof. dr. ir. G.J.M. Smit (promotor)

prof. dr. J.L. Hurink (promotor)

dr. ir. J. Kuper (assistent-promotor)

thesis April 1, 2010 14:45 Page v ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Voor mijn ouders,

Trix en Bert Hölzenspies

thesis April 1, 2010 14:45 Page vi ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

thesis April 1, 2010 14:45 Page vii ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Abstract

The ‘free’ speed-up stemming from ever increasing processor speed is over. Perfor-

mance increase in computer systems can now only be achieved through parallelism.

One of the biggest challenges in computer science is how to map applications onto

parallel computers.

Concurrency, seen as the set of valid traces through a program, is utilized by trans-

lating it into actual parallelism, i.e. into the simultaneous execution of multiple

computations. With higher degrees of unpredictability—both with regards to the

actual workload and to the availability of resources—more can be gained from

making scheduling and resource management decisions at run-time, when more

information (such as resource availability and required Quality of Service (QoS)

level) is available. In cases where concurrency is data-dependent, programming

models and their supporting run-time systems also benefit from exposing concur-

rency when that data is known, viz. at run-time. In this thesis, two systems for

run-time exploitation of concurrency are discussed.

The first system discussed in this thesis is an on-line spatial resource manager for

real-time streaming applications, especially in energy constrained environments.

In embedded systems, these applications typically require QoS guarantees, are

structurally stable (do not change over time) and are active for a (relatively) long

period of time. With increasing complexity, embedded systems consist increasingly

of many independent processors with varying degrees of specialization. Designing

systems in such a way is beneficial for flexibility, yield increase and energy con-

servation. However, exploiting such a heterogeneous multi-processor system in

order to realize these benefits requires that the resources it provides are dynamically

assigned to applications.

A formal and precise definition of this on-line spatial resourcemanagement problem

is given in this thesis and qualitative evaluation criteria by which on-line spatial

resource managers can be compared are introduced. Constraints on applications

and techniques for their modelling are discussed. Since the complexity of this

problem is prohibitive and the time constraints to make choices are tight, a heuristic

approach is introduced. In this approach, the complete problem of spatial resource

management is partitioned into the subproblems of binding, mapping, routing, and

QoS validation.

The subproblems are ordered in the sense that choices made for the solutions to

thesis April 1, 2010 14:45 Page viii ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

viii

A
b
st
r
a
c
t

earlier subproblems are considered fixed when solving later subproblems. Since the

subproblems still have a high complexity, algorithms and approaches from literature

are adapted to partition them further. The adapted algorithms are implemented

in Kairos, a proof-of-concept on-line spatial resource manager for heterogeneous

multi-processor systems. A large use case, taken from a state-of-the-art industrial

application, is used to explore Kairos’ capabilities. With this use case and a with

synthetic benchmark, Kairos is shown to be a successful proof-of-concept imple-

mentation for on-line spatial resource management and, thus, the problem is shown

to be solvable with acceptable concessions.

The second system discussed in this thesis deals with applications for which it is

hard or even impossible to predict their behaviour to the extent that is necessary to

fulfil real-time requirements. In particular, this holds for applications for which the

amount of concurrency is highly data-dependent and the work done by different

tasks in an application is unbalanced, variable and unpredictable. For these appli-

cations, performance can not be guaranteed, but by exposing (data-dependent)

concurrency at run-time, an application’s performance and the total system’s utiliza-

tion can be improved.

The system discussed here is SNet. It is developed at the University of Hertfordshire

and comprises a coordination language, a programming model and a run-time

system. A great strength of SNet is that it allows for the separation of concerns

between application engineering and concurrency engineering. The application

engineer does not program individual threads with their synchronization and com-

munication, but decomposes the application into small units of work on a stream of

input data. In this thesis, a denotational semantics for SNet is presented with proof

that under those semantics, SNet is prefix monotonic, i.e. for every finite prefix of

the input stream, a prefix of the output stream exists that is unchanged by further

input. Furthermore, a novel execution model is presented that exposes significantly

more concurrency than the former execution model. A strong indication is given

that a schedule exists, such that the novel execution model does not introduce

non-termination.

thesis 1 april 2010 14:45 Page ix ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Samenvatting

Dat het versnellen van centrale rekeneenheden onze toepassingen blijft versnellen

mag niet langer voor lief worden genomen. Betere prestaties van nieuwe computers

zullen noodgedwongen voort moeten komen uit parallellisme. Eén van de grootste

uitdagingen van de hedendaagse informatica is hoe onze toepassingen af te beelden

op parallelle computers.

Multiprogrammering (uitgedrukt in het aantal geldige ordeningen van instructies)

kan worden omgezet in parallellisme of, met andere woorden, in gelijktijdige uitvoe-

ringen van meerdere instructies. Nu in nieuwe computersystemen en toepassingen

zowel de werklast als de beschikbare middelen onderhevig zijn aan toenemende

onvoorspelbaarheid, valt er veel te winnen met het uitstellen van beslissingen over

toewijzingen van middelen aan toepassingen totdat er meer bekend is over beiden.

Dit is bijvoorbeeld het geval in lopende systemen. Zeker wanneer de mate van mul-

tiprogrammering afhangt van waarden, kunnen systemen beter worden benut door

beslissingen over toewijzingen te nemen wanneer de relevante waarden bekend

zijn. Wederom is dit het geval in lopende systemen. In dit proefschrift worden twee

systemen beschreven die multiprogrammering benutten op het moment of nadat

toepassingen worden gestart.

Het eerstbeschreven systeem is dat van het beheer van ruimtelijke middelen in

lopende computersystemen voor stroomverwerkende toepassingen met harde tijds-

eisen, met bijzondere aandacht voor energiebegrensde omgevingen. In ingebedde

systemen geldt voor zulke toepassingen doorgaans dat ze een onveranderlijke ruim-

telijke structuur hebben, dat ze harde garanties nodig hebben aangaande de kwaliteit

van het resultaat (in termen van tijdigheid) en dat ze veelal voor lange tijd lopen.

Met de toenemende complexiteit bestaan ingebedde systemen in toenemende mate

uit een groot aantal onafhankelijke rekeneenheden (en andere middelen, zoals

geheugens) met wisselende specialisatiegraad. Deze ontwerptrend kan bijdragen

aan de flexibiliteit van computersystemen, aan de opbrengst van de productie van

geïntegreerde schakelingen en aan energiebesparing. Beheer van ruimtelijke mid-

delen onder draaitijd is echter noodzakelijk om systemen, bestaande uit een grote

heterogene verzameling rekeneenheden (en andere middelen), toepassingen uit te

laten voeren met de vereiste garanties.

Wat wel en niet omvat wordt door beheer van ruimtelijke middelen onder draaitijd

wordt formeel gedefinieerd in dit proefschrift. Daarnaast worden enkele kwalita-

thesis 1 april 2010 14:45 Page x ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

x

S
a
m
e
n
v
a
t
t
in
g

tieve criteria om beheermethoden te kunnen vergelijken gegeven en zijn eisen die

aan toepassingen gesteld worden en technieken om zulke toepassingen te modelle-

ren omschreven. Om in de zeer korte hiervoor beschikbare tijd toewijzingskeuzes

te maken en met het oog op de complexiteit van dit probleem worden heuristieken

ingevoerd. Hierbij wordt het totale probleem van beheer van ruimtelijke midde-

len opgedeeld in vier deelproblemen, te weten binding, afbeelding, routering en

tijdseisenvalidatie.

Deze deelproblemen moeten als geordend worden beschouwd. Dit betekent dat

oplossingen voor eerdere deelproblemen als gegeven worden beschouwd bij de

oplossing van latere deelproblemen. Daar de individuele deelproblemen zelf nog

steeds zeer complex zijn worden algoritmen uit de literatuur verder gespecialiseerd

om ze verder op te delen en op te lossen. Het geheel van al deze algoritmen is bij

wijze van demonstratie van de haalbaarheid geïmplementeerd in Kairos. Kairos

wordt getoetst met behulp van een grote industriële voorbeeldtoepassing en met

gesynthetiseerde toepassingen. De resultaten tonen aan dat met Kairos voldoende

is gedemonstreerd dat het probleem oplosbaar is met aanvaardbare concessies.

Het voortsbeschreven systeem faciliteert toepassingen, waarvoor het moeilijk of

zelfs onmogelijk is om het gedrag (met betrekking tot behoeften aan middelen en

tijd) te voorspellen. Deze moeilijke voorspelbaarheid komt vooral veel voor bij toe-

passingen, waarvan demate vanmultiprogrammering afhankelijk is van de waarden

van de invoer en waar de mogelijke opdeling van werk in deeltaken onregelmatig,

wisselend en onvoorspelbaar is. De prestaties van dergelijke toepassingen kunnen

niet worden gegarandeerd, maar zijn wel te verbeteren door (waarde-afhankelijke)

multiprogrammering op draaitijd te identificeren en uit te buiten, waardoor ook de

efficiëntie van het computersysteem dat de toepassing uitvoert wordt verbeterd.

Het betreffende systeem is het van de University of Hertfordshire afkomstige SNet.

Het omvat een coördinatietaal, een programmeermodel en een draaitijdomgeving.

De kracht van SNet schuilt in de scheiding van het ontwerp van de toepassing

enerzijds en demultiprogrammering anderzijds. De ontwikkelaar van de toepassing

hoeft zich nietmet fijnmazige synchronisatie tussen deeltaken bezig te houden,maar

slechts de gehele toepassing op te delen in kleine eenheden van werk, gedefiniëerd

op een gegevensstroom. In dit proefschrift wordt een denotationele semantiek

gegeven van de taal SNet en met die semantiek wordt een bewijs gegeven dat de

taal SNet prefixmonotoon is in de invoer, d.i. dat voor iedere eindige prefix van

de invoer er een prefix van de uitvoer bestaat die niet afhangt van verdere invoer.

Ten slotte wordt er een nieuw executiemodel beschreven, dat een significant hogere

graad van multiprogrammering blootlegt dan het huidige executiemodel van SNet.

Voor dit executiemodel wordt een sterke indicatie gegeven, dat er altijd een schema

kan worden gevonden waardoor er geen nonterminatie wordt geïntroduceerd.

thesis 1 april 2010 14:45 Page xi ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Dankwoord

Gezien de context van dit dankwoord, is het gepast te beginnen bij mijn promotoren

Gerard Smit en Johann Hurink en assistent-promotor Jan Kuper.

Door Gerard ben ik terechtgekomen bij de groep die tijdens mijn onderzoek de

zijne werd. Hij stelt iedereen in de groep in staat naar eigen inzicht te werken, maar

weet daarbij wel een hechte groep te behouden, waarin discussie en kruisbestuiving

centraal staan. Nergens anders heb ik groepen gezien zo groot als caes, die toch zo

betrokken zijn. Toen ik begon met mijn onderzoek, werd Gerards vooruitziende

blik door velen in de vakgemeenschap aan het begin van mijn onderzoek nog met

scepsis bekeken, maar in ieder geval voor wat betreft mijn onderzoek blijkt hij—tot

mijn grote genoegen—gelijk te krijgen.

Johann heb ik pas leren kennen tijdens mijn aanstelling als AiO. Van zijn kennis en

doortastende inzicht heb ik van het begin af aan erg genoten, maar de misschien

nog wel belangrijkere onderlinge sfeer is goed begonnen en de afgelopen jaren

alleen maar vooruit gegaan. Vooral tegen het einde ben ik zeer onder de indruk

geraakt van hoemakkelijk hij voornoemd inzicht aanwendt voor sociale en politieke

doeleinden.

Jan weet ongetwijfeld zelf wel dat ik hier niet alles kan benoemen. Ruimschoots

voor mijn AiO-tijd rekende ik hem al tot mijn goede vrienden en dat is in zijn

rol als begeleider meer dan eens bevestigd. Of onze discussies nu over wiskunde,

programmeren, onderwijs, filosofie, whisky, muziek of mensen gaan, ik put er altijd

energie en inspiratie uit. Dat we het niet eens zullen worden over schrijfstijl (Over

hoeveel losse zinnen had ik voorgaande opsomming uit moeten spreiden?) en

voetbal, daar heb ik vrede mee. Ik hoop nog vele jaren plezier van ons contact te

hebben.

Evenzo onmisbaar bij een promotie zijn de paranimfen. Het is bijna niet meer

voorstelbaar dat ik Vincent Jeronimus leerde kennen als mijn leidinggevende bij

een bijbaan naast mijn studie. Al snel bleek dat wij het buiten het werk goed met

elkaar konden vinden, vooral toen ik bij hem in een band belandde die het nog

negen jaar vol zou houden. Momenteel is het even gedaan met onze bands, maar

samen muziek maken is nog zeker niet voorbij. Timon ter Braak ken ik nog niet

zo lang, maar als afstudeerder heeft hij mij meerdere malen verrast met goede

inzichten. Naast het feit dat hij van aanpakken weet en snel zijn eigen en mijn

ideeën realiseert, is hij een zeer aangename reisgenoot gebleken bij workshops en

thesis 1 april 2010 14:45 Page xii ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

xii

D
a
n
k
w
o
o
r
d

conferenties. De overgang van afstudeerder naar collega was een zeer natuurlijke,

evenals zijn betrokkenheid bij mijn promotie als paranimf. Timon, jouw bijdragen

aan mijn onderzoek hebben mijn zo nu en dan gestrande motivatie al meerdere

keren vlotgetrokken.

Natuurlijk is de gehele caes-groep van grote invloed geweest op mij gedurende de

jaren die aan dit proefschrift vooraf gingen. Ik wil enkele mensen echter specifiek

bedanken voor hun invloed en contact.

Enkele jaren heb ik het genoegen gehad kantoorgenoot te zijn geweest van Pascal

Wolkotte. Pascal, met veel plezier heb ik je ‘besmet’ met een passie voor typografie

en allerlei daaraan gerelateerde software. Met nog veel meer plezier heb ik over

diezelfde typografie en software, maar zeker ook over data-analyse en onderzoeks-

houding, veel van je geleerd. Discussies over alles in en ver buiten de techniek mag

ik nog altijd graag met je voeren.

Ten tijde van dit schrijven deel ik het kantoormetMarkWestmijze; eerder al als huis-

en nu als kantoorgenoot heb ik veel plezier met hem gehad. De avondvullende (en

te zeldzame) gesprekken met Albert Molderink zijn altijd boeiend en het wekelijkse

squashen is iedere keer een moment om te aarden en even goed adem te halen.

Tot slot is een leerstoel reddeloos verloren zonder goede secretaresses. Dit ben ik

nóg meer gaan waarderen toen ik een paar maanden te gast was bij een groep waar

zulke ondersteuning ontbrak. De caes groep mag zich in het bijzonder gelukkig

prijzen met de secretaresses die ze heeft, te weten Marlous Weghorst, Nicole Baveld

en Thelma Nordholt.

Aforementioned visit to another groupwasAlex Shafarenko’s group at theUniversity

of Hertfordshire. I thank all the people I met there for a wonderful visit. Not only

did I have a great time, but I learned quite a few things and left with thoroughly

replenished inspiration.

Natuurlijk is er de afgelopen jaren een leven, zij het beperkt, naast het promotieon-

derzoek geweest. Jan Koornstra is al een klein decennium mijn muzikale baken en

geweten. Jans geduld, zeer brede muzikale interesse en uitzonderlijke gevoel voor

mijn vaak ongecontroleerde bijdragen zijn zeldzaam te noemen. De diepgang van

onze woordeloze communicatie heb ik bij niemand anders nog ervaren. Naast al

onze wisselende muzikale bezigheden spelen wij jaarlijks een huiskamerconcert bij

Anja & Jan Wagner. Deze jaarlijkse gelegenheid en de daarbij betrokken mensen

zijn voor mij van grote betekenis.

In communicatie met anderen staat het woordelijke juist vaak centraal. Discussies

met Robert Nijssen, Pièrre Jansen en Rien Boone over politieke, maatschappelijke

en levensbeschouwelijke vraagstukken zijn zeer prikkelend. Daarbij heeft het gezin

van laatstgenoemde mij altijd zeer hartelijk ontvangen en op verschillende momen-

ten en manieren ondersteund. Met Martin Bosker spreek ik ook graag over een

verscheidenheid aan thema’s, maar waar ik Martin vooral dankbaar voor ben, is

dat hij mij heeft laten zien dat het maken van foto’s niet vervelend hoeft te zijn en

vaak zelfs leuk is. Hij nam de foto die verwerkt is in de kaft van dit proefschrift en

thesis 1 april 2010 14:45 Page xiii ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

xiii

D
a
n
k
w
o
o
r
d

de uitnodiging voor de promotieplechtigheid, maar er gingen er velen aan vooraf.

Martin kan ik slechts zeggen: 9–0! Dennis Mulder is ook vaak te vinden voor

uitgebreide gesprekken ver na zonsondergang. Daarbij heeft hij zijn expertise op

taalgebied aan willen wenden om delen van dit proefschrift te becommentariëren.

Diederik Telman ontwierp kaft van en uitnodiging bij dit proefschrift. Hij staat ver

van mijn vakgebied, maar heeft na een korte uitleg de inhoud blijkbaar zo goed

bevat, dat hij met een geweldige abstracte representatie op de proppen kwam. Naast

zijn grote grafische talent heb ik ook erg van zijn ritmische talent genoten, omdat

hij jaren bandgenoot is geweest. Andere bandgenoten die ik zeer dankbaar ben voor

de muzikale samenwerking zijn o.a. Stefan Klein, Daniël van Doorn, Ivo Kreetz,

Ties Brands, Joris Holtackers en alle sessiemuzikanten van De Cactus.

Ik prijs mij gelukkig met de velen waarbij ik in tijden van zwaar weer kan schuilen,

maar met wie het in tijden van voorspoed evenzo goed toeven is. Het zijn er teveel

om een uitputtende opsomming te geven en dus moet ik mij beperken tot de zeer

uitzonderlijke gevallen. Léon & Angela Buijs, Paula den Boer & Alex Kok, Maarten

van der Weg, Erik Hagreis, René Beerens, Pascal & Marieke Viskil, Addy Viskil,

Duco Hoogland, Rik Bos, Stefan Janssen, Bertus Klein, Nelleke Ruijter, Pascal Huis

in ’t Veld en Ivo Belt vallen allemaal in deze categorie.

Als laatste wil ik hen bedanken die ik al het langst in mijn leven heb: Met zus Laura

deel ik de laatste jaren een steeds verder overlappende muziekinteresse. Laura, onze

bezoekjes doen mij altijd veel goed. Mijn broer Jurriaan is vaker dan hij weet een

voorbeeld voor me geweest en zijn invloed door discussie en commentaar komt

in dit proefschrift veel terug. Ten slotte wil ik mijn ouders bijzonder bedanken.

Niet alleen hebben zij mij altijd ondersteund in materiële, maar vooral ook in

immateriële zin. Ze staan altijd klaar met advies en wanneer het advies op is, is er

altijd een onvoorwaardelijk thuis. Hoe bijzonder en belangrijk het voor me is dat

ze allebei getuigen kunnen zijn van mijn promotie kan ik niet in woorden vatten.

Philip Hölzenspies

Hengelo, april 2010

thesis April 1, 2010 14:45 Page xiv ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

thesis April 1, 2010 14:45 Page xv ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Contents

1 Introduction ⋅ 1

1.1 A truly new era for programmers ⋅ 1

1.1.1 High-level programming languages ⋅ 1

1.1.2 Consumer at the helm ⋅ 2

1.1.3 The new era ⋅ 3

1.2 Approach and contributions of the thesis ⋅ 4

1.3 On-line spatial resource management ⋅ 5

1.3.1 Real-time streaming applications ⋅ 5

1.3.2 Spatial resources: Tiled systems ⋅ 6

1.3.3 On-line resource management ⋅ 7

1.4 Coordination language SNet ⋅ 9

1.4.1 Asynchronous combinatorial stream programming ⋅ 9

1.5 Structure of the thesis ⋅ 11

I Synchronous Dataflow 13

2 State-of-the-Art ⋅ 15

2.1 Introduction ⋅ 15

2.1.1 Application specification ⋅ 16

2.1.2 Performance guarantees and multi-tasking ⋅ 17

2.2 Prerequisites for on-line spatial resource management ⋅ 18

2.2.1 Live task migration ⋅ 19

2.3 Subproblems ⋅ 20

2.3.1 Binding ⋅ 20

2.3.2 Mapping ⋅ 21

2.3.3 Routing ⋅ 26

2.4 Validation ⋅ 28

2.5 Optimization criteria ⋅ 28

2.6 Conclusion ⋅ 29

3 On-line spatial resource management ⋅ 31

3.1 Structural Definitions ⋅ 31

3.1.1 Hardware platform ⋅ 31

3.1.2 Software applications ⋅ 34

thesis April 1, 2010 14:45 Page xvi ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

xvi

C
o
n
t
e
n
t
s

3.1.3 Paths ⋅ 34

3.1.4 Execution Layout ⋅ 35

3.2 Resources: Capacities & Requirements ⋅ 35

3.2.1 Composited and adjusted capacities ⋅ 37

3.2.2 Cumulative requirements ⋅ 38

3.2.3 Minimum capacities ⋅ 39

3.3 Constraints and cost ⋅ 39

3.4 Proposed heuristic approach ⋅ 40

3.4.1 Complexity as motivation ⋅ 40

3.4.2 Hierarchical Search ⋅ 41

3.5 Conclusion ⋅ 45

4 Kairos: an osrm implementation ⋅ 47

4.1 Binding ⋅ 47

4.1.1 The Bind algorithm ⋅ 47

4.1.2 Complexity of Bind ⋅ 50

4.2 Mapping ⋅ 50

4.2.1 Problem partitioning: The Map algorithm ⋅ 51

4.2.2 Complexity of Map ⋅ 58

4.3 Routing ⋅ 58

4.3.1 Considerations ⋅ 59

4.3.2 Routing algorithms ⋅ 59

4.3.3 Multicast routing by rendezvous points ⋅ 60

4.4 Validation ⋅ 60

4.4.1 Synchronous data flow graphs ⋅ 61

4.4.2 Rewriting task graphs ⋅ 62

4.4.3 Throughput analysis ⋅ 64

4.4.4 Latency analysis ⋅ 65

4.5 Implementation: Kairos ⋅ 67

4.5.1 User interface: starting applications ⋅ 68

4.5.2 Linux kernel workflow ⋅ 70

4.5.3 User interface: interaction with running applications ⋅ 70

4.6 Conclusion ⋅ 71

5 osrm exploration ⋅ 73

5.1 Case study: Beamformer ⋅ 73

5.1.1 Platform ⋅ 74

5.1.2 Application ⋅ 74

5.1.3 Results ⋅ 77

5.2 Synthetic benchmarks ⋅ 79

5.2.1 Platforms ⋅ 79

5.2.2 Application sets ⋅ 80

5.2.3 Reference solutions ⋅ 81

5.2.4 Results ⋅ 83

5.3 Conclusion ⋅ 86

thesis April 1, 2010 14:45 Page xvii ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

xvii

C
o
n
t
e
n
t
s

II Asynchronous Dataflow 87

6 Denotational semantics of SNet ⋅ 89

6.1 Motivation ⋅ 89

6.2 A brief overview of SNet ⋅ 90

6.2.1 Networks, records and streams ⋅ 90

6.2.2 Types, type matching and routing ⋅ 90

6.2.3 Flow inheritance ⋅ 92

6.2.4 Primitive networks ⋅ 92

6.2.5 SNet Network Combinators ⋅ 94

6.3 Purpose and approach ⋅ 96

6.4 Data structures and utilities ⋅ 97

6.4.1 Types and evaluables ⋅ 97

6.4.2 Streams ⋅ 98

6.4.3 Making everything deterministic: oracles ⋅ 100
6.4.4 A common pattern for combinators: split-merge ⋅ 101

6.4.5 Synchronisation ⋅ 106
6.5 Semantics ⋅ 106

6.5.1 Primitive networks ⋅ 107
6.5.2 Sequential composition ⋅ 107

6.5.3 Parallel composition ⋅ 108
6.5.4 Serial replication ⋅ 108

6.5.5 Inspection composition ⋅ 109
6.6 Prefix monotonicity ⋅ 109

6.6.1 Proof for SNet networks ⋅ 111
6.7 Conclusion ⋅ 114

7 Hydra: an SNet implementation ⋅ 115
7.1 Motivation ⋅ 115
7.2 Approach ⋅ 116

7.3 Compilation scheme & run-time system ⋅ 118
7.3.1 Stateless sequential networks: Output reordering ⋅ 118

7.3.2 Multiplicitous boxes ⋅ 121
7.3.3 Synchrocells: Local reordering ⋅ 123

7.3.4 The final scheme ⋅ 131
7.4 No introduction of non-termination ⋅ 132

7.4.1 Starvation ⋅ 132
7.4.2 Deadlock ⋅ 133

7.5 Conclusion ⋅ 134

8 Conclusions & recommendations ⋅ 137
8.1 On-line spatial resource management ⋅ 137

8.2 SNet ⋅ 139

A Benchmark results ⋅ 141

thesis April 1, 2010 14:45 Page xviii ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

xviii

C
o
n
t
e
n
t
s

A.1 Kairos configurations ⋅ 141
A.2 Run-times ⋅ 142

B Structure definitions for SNet ⋅ 145
B.1 Core representation of SNet ⋅ 145

B.2 Expressions and patterns ⋅ 148
B.3 Network indices ⋅ 151

C Literate programming substitutions ⋅ 153
C.1 Basic Haskell syntax ⋅ 153
C.2 Indices and oracles ⋅ 154

C.3 SNet types & values and their operators ⋅ 154
C.4 Types for program representation ⋅ 154

C.5 Semantics ⋅ 156

Acronyms ⋅ 159

Bibliography ⋅ 161

List of Publications ⋅ 171

thesis April 1, 2010 14:45 Page 1 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Ch
ap

te
r1

Introduction

1.1 A truly new era for programmers

Computer science is a very young science. The discipline of programming is even

younger. However, with the new millennium, there is one challenge that no pro-

grammer can safely ignore: how to program parallel computers. We can speak of

a new era, not because the challenge itself is new, but because most programmers

did not need to face it, until now. In the days of the first electronic computers, the

programmer and the user were the same person, usually even at the same time.

Computers were commonly developed with a specific application in mind. Two

very important things have happened since, that changed this perspective on the

design and use of computers: High-level programming languages have been de-

veloped and the market for consumer products has come to dictate the direction

of computing. Both topics are addressed briefly here as reasons why mainstream

programmers have been lead away from having to think about the internals of the

computer running their programs and, thus, from having to deal with properties of

parallel computers.

1.1.1 high-level programming languages

In the 1950s, the idea of machine-independent or high-level programming lan-

guages emerged. The first generally recognised complete compiler of a high-level

programming language was ibm’s fortran compiler, developed by a team lead

by John Backus, published in 1957 [7]. Shortly thereafter (1960) the first program,

thesis April 1, 2010 14:45 Page 2 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

2

1.1.2
–
C
o
n
su
m
e
r
a
t
t
h
e
h
e
l
m

written in cobol, was compiled for two different computers [60]. Since then, pro-

grammers have arguably seen a consistent relaxation of constraints stemming from

computer architectures. That is to say, the complexity of programming has been

driven by a desire to tackle more complex problems and to improve extra-functional

properties of source code (e.g. modularity), rather than by problems resulting from

the evolution of underlying hardware.

There have been major hurdles on the ongoing road towards higher performance.

However, these hurdles have been overcome by landmark achievements under the
programming level: Integrated Circuit (ic) production technology, microprocessor

architecture and compiler technology. As ics have grown (in terms of numbers

of transistors) and sped up (in terms of clock frequency) the power consumption

has increased, giving rise to power dissipation (i.e. heat) problems. Also, with the

increase of digital functionality in mobile devices (since the early 1990s), battery life

became a concern. Energy problems have been solved in the past by, for example,

moving from N-type Metal-Oxide-Semiconductor (nmos) designs to designs based

on Complementary Metal-Oxide-Semiconductor (cmos), using copper instead of

aluminium and Silicon-On-Insulator (soi) technology. To reduce the time hard-

ware components were idling and to increase the overall instruction throughput,

architectural concepts have been developed that are still pervasive in modern com-

puter architecture, like instruction pipelining, spooling, Direct Memory Access

(dma), superscalar, out-of-order & speculative execution and Single Instruction

Multiple Data (simd). The performance gap between processors and memory has

been narrowed by (among others) caches and pipeliningmemory architectures—e.g.

Fast Page Mode (fpm) and Double Data Rate (ddr). The added programming com-

plexities introduced by these architectural solutions (esp. resource contention in

superscalar and cache-miss penalties) have been solved by compiler improvements.

1.1.2 consumer at the helm

In the previous section we described why programmers did not have to think about

parallelism. However, there is also a good reason why programmers are now forced

to: The market demands it.

As stated before: Early electronic computers were specifically designed for a particu-

lar application. Although quite a few notable computers were developed for a more

general purpose (e.g. ibm S/360 & pdp-11), the most important milestone on the

road to truly application agnostic computers was the introduction of the micropro-

cessor in the 1970s. During the first three decades of the microprocessor era, there

was an explosive growth of the number of architectures and instruction sets [100].

Although the x86 processor family was already very popular in the 1990s, its most

important market share still was low-end office applications and consumers. Most

applications considered ‘high-end’ or ‘industrial’ were run on other architectures,

e.g. mips, power and sparc. This has changed in the first decade of the twenty-first

century. The x86 processor family has conquered the high-end market. Of the

thesis April 1, 2010 14:45 Page 3 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

3

C
h
a
p
t
e
r
1
–
In
t
r
o
d
u
c
t
io
n

top 500 supercomputers in the world, as of November 2009, 87.6% are built with

x86 processors and 10.4% are based on power processors [94]. Workstations for

industrial applications have seen a similar trend.

These market observations are important, because they are indicative of the fact

that the computer landscape is determined predominantly by the consumer market.

This has important implications for the world of applied computer science as well.

Most significantly for the work in this thesis: It means that the consumer market

is the initiator of the new era for programmers; one, in which programmers need

to think about computers as parallel machines. There has been keen interest in

parallel computing from academia and other researchers since, at least, the late

1950s. Many parallel computers have been built in the second half of the twentieth

century, but until the turn of the century, parallel computing was considered by

most to be something for the High Performance Computing (hpc) market only.

At the start of the 2010s, it is hard to find off-the-shelf x86 processors that contain

only one core. The x86 processor manufacturers have decided the time has come to

move a responsibility for further speed-up to the programmer.

1.1.3 the new era

There is a reasonable consensus that mainstream programming must move with the

times. The prominent c++ expert Herb Sutter provocatively stated that “the free

lunch is over” [93]. Asanovic et al. at University of California Berkley published

an often cited vision statement identifying seven key questions for future parallel

computing research, two of these deal with programming challenges [6]. Consider-

ably less consensus exists about what the best approach is for programming parallel

computers.

Concurrency vs Parallelism

One common source of disagreement among researchers is the precise definition

of terminology. For a good understanding of the title of this thesis, one such

terminology problem is especially relevant: concurrency and parallelism. Many

(acceptable) definitions exist for these terms. However, in this thesis, these terms

are used as follows:

» Concurrency is non-determinism with regards to the order in which events

may occur.

» Parallelism is the degree to which events occur simultaneously.

Informally, concurrency can thus be seen as potential parallelism, i.e. if the order of

events a and b is undefined, theymay occur as a followed by b, as b followed by a, or
simultaneously. Only in the last case, there is actual parallelism. In this terminology,

a key difference between concurrent programming and parallel programming is

thesis April 1, 2010 14:45 Page 4 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

4

1.2
–
A
p
p
r
o
a
c
h
a
n
d
c
o
n
t
r
ib
u
t
io
n
s
o
f
t
h
e
t
h
e
sis

that the latter specifies a precise schedule of events. Parallel programming is only

possible when resource availability is known precisely and the potential parallelism

is not dependent on the program’s input. If resource availability is known at compile-

time, concurrent programs can be rewritten to parallel programs by a compiler. The

central theme of this thesis is how postponing the translation from concurrency

into parallelism until run-time can be beneficial, either for energy conservation or

for performance optimization.

1.2 Approach and contributions of the thesis

There are programming disciplines in which concurrency has long ago been rec-

ognized as a necessity. Two of these disciplines are embedded systems and hpc.

In this thesis, we examine these two disciplines and try to extend them towards

mainstream programming.

In embedded systems, hardware is typically developed or configured for a specific

application or a class of applications. This allows for very fine grained optimiza-

tion in the design process. However, many embedded devices are pushed towards

being multi-purpose platforms. Two examples of this are smart phones and au-

tomotive integrated multi-media systems. In traditional design approaches for

embedded systems, such systems are programmed including detailed resource man-

agement/scheduling. Since both the number of applications and the complexity of

the hardware are rapidly increasing, the complexity of such approaches becomes

prohibitive. Thus, performing resource management in a running system reduces

time-to-market and increases the overal flexibility. The first contribution of this

thesis is a system for on-line spatial resource management that gives application
developers a perspective of a (more) general purpose platform, instead of a complex

system of individual shared resources. This work is introduced in more detail in

section 1.3.

The central problem in programming for hpc is how to translate a large computa-

tional problem into a program that balances computational load over the available

resources. Many applications have strongly data-dependent resource requirements

and concurrency. Parallel computers are becoming more unpredictable as well,

since an increasing number of hpc systems are based on clusters and clouds [94].

Application engineers (physicists, chemical scientists, etc.) understand the com-

plexity and the structure of the problem very well. Concurrency engineers have

that kind of understanding of distributed computing with a complex structure of

interconnected resources. The problem is, that both the application and the parallel

machine need to be understood well, to produce a program that delivers the desired

high performance. In an attempt to separate these concerns, researchers at the Uni-

versity of Hertfordshire have developed a coordination language called SNet [37]. In
SNet, the structure of application is specified in such a way that a run-time system

can make resource management choices to try to deliver the highest performance

with the available resources. The second contribution of this thesis consists of two

thesis April 1, 2010 14:45 Page 5 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

5

C
h
a
p
t
e
r
1
–
In
t
r
o
d
u
c
t
io
n

contributions to SNet: A denotational semantics for the language SNet is given, as

well as a new execution model, implemented in a compiler and run-time system.

This work is introduced in more detail in section 1.4.

1.3 On-line spatial resource management

Very few embedded systems are designed from scratch. Instead, they are generally

constructed by combining Intellectual Property (ip) blocks. To create a system

with ip blocks, they must be able to communicate. This is done with some form

of interconnection. Because embedded systems are typically cost and energy con-

strained, ip blocks are usually constructed around one central bus. This means that

interconnection introduces a notion of spatial locality to resource management.

Taking this locality into account can help increase QoS and energy efficiency, as

discussed below.

Terminology in the area of on-line spatial resource management is not (yet) very

stable. Originally, we referred to this research as run-time spatial mapping, which

is the prevalent terminology in most of the publications related to this thesis. This

has caused debate and confusion in the past. Run-time is often associated with

the run-time of an application, rather than that of a system. Similarly, mapping
is a term used in many different ways in different areas. Resource management
is the generic term for allowing or refusing applications access to resources. As

explained above, these resources are arranged in a way that their spatial properties
are relevant to resource management. The qualifier on-line indicates, that spatial
resource management occurs in a running system.

1.3.1 real-time streaming applications

Real-time streaming applications are implemented and used in portable and other-

wise energy constrained (embedded) systems. Such systems require energy-aware

tools and an energy-efficient processing architecture. Typical examples of such

applications involve Digital Signal Processing (dsp) algorithms and are found in

phased array antenna systems (for radar and radio astronomy), wireless (baseband)

communication (for wireless lan, digital radio, umts [30, 75, 106]), multi-media,

medical imaging and sensor networks.

A key characteristic of what is referred to here as a streaming application is that it

can be modelled as a dataflow graph (dfg) with channels (streams of data items,

represented by the edges) between tasks (computational kernels, represented by

the vertices) [23]. The qualification “real-time” implies that timeliness is part of

correctness. As a consequence, throughput, latency and jitter are constraints rather
than (optimization) objectives [88]. In hard real-time systems no deadline may be

missed, as that may lead to dangerous situations. In soft real-time systems, missing

a deadline is not catastrophic, but does degrade the system’s total performance.

thesis April 1, 2010 14:45 Page 6 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

6

1.3
.2
–
S
pa
t
ia
l
r
e
so
u
r
c
e
s:
T
il
e
d
sy
st
e
m
s

Even though no firm guarantees are given for such systems, the goal is to keep the

QoS high. In short, an important property of real-time systems is that nothing is

gained by delivering a higher QoS than the application asks for.

For any kind of real-time behaviour (soft or hard), applications need to have pre-

dictable behaviour in terms of time and spatial (i.e. hardware) resource usage [16]

so that at least some QoS prediction can be made. Predictable behaviour means

that execution time and resource usage are bounded. Tighter bounds give better-

or-equal predictability. Typical real-world applications that fall into this category

display a high degree of regularity in the communication between tasks and have

a semi-static life-time [106], i.e. typically in the order of minutes, rather than

milliseconds.

1.3.2 spatial resources: tiled systems

As stated in the introduction of this section, embedded systems are commonly built

up out of ip blocks. ip blocks of any granularity can be combined into components

of different granularity: A system may consist of a single Printed Circuit Board

(pcb) or of multiple interconnected pcbs. One pcb can contain many ics-packages.

Every ic-package can contain multiple chips—a so called System in Package (SiP).

Every chip may contain many different ip blocks, i.e. may be a Multi-Processor

System-on-Chip (MPSoC). MPSoC integration is gaining particular popularity in

embedded systems, because of its compactness and energy efficiency (compared to

multi-chip solutions).

Recently, considerable numbers of MPSoC designs have been proposed and built.

Examples of such MPSoC designs are ibm’s Cell [49], Tilera64 [21], Intel’s ex-

perimental 80-tile [97], Intel’s prototype Single-chip Cloud Computer (scc) [82],

Annabelle [85] and the Cutting edge Reconfigurable ICs for Stream Processing

(crisp) project chip [110]. On a more conceptual level, MPSoC design templates

have been developed, such as Pleiades [3] and Chameleon [4]. For a more detailed

overview, we refer to [4].

What is referred to as a tiled system in this thesis, is a multi-processor architecture,

where the individual processors can be considered autonomous and composable.

Autonomicity means that a processor can be programmed separately from other

processors. Separate alus or pipelines in a superscalar processor are not considered

autonomous. Composability means that a processor can be assigned a task—or

tasks already running on the processor can be changed or removed—without di-

rectly affecting (unrelated tasks on) other processors. In other words, the QoS of

unrelated tasks is not affected, i.e. they still do their jobs correctly and within their

guaranteed resource bounds. The same autonomicity must hold for other resources

in the tiled system, like memories with a communication assist, Network-on-Chip

(NoC) or dma, i/omodules (a/d converters, etc.), or application specific circuitry.

For these (spatial) resources to form one system, they must be interconnected. The

combination of an autonomous resource and its interface to the system’s intercon-

thesis April 1, 2010 14:45 Page 7 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

7

C
h
a
p
t
e
r
1
–
In
t
r
o
d
u
c
t
io
n

nect is referred to as a Hardware Element (HwE). Related work often identifies the

Processing Element (pe) to be an elementary building block of MPSoCs, which

is why the discussion of related work (in chapter 2) uses the term pe. Besides pes,

HwEs also include memories and i/omodules. The rest of this thesis assumes the

more general HwE as a basic component. When anMPSoC contains different types

of HwEs (i.e. different resources), it is considered heterogeneous.

For the sake of composability, a system’s interconnect must also provide QoS guar-

antees [52]. The NoC paradigm [10, 24], which is gaining popularity in the MPSoC

world, has interconnect architectures that provide such guarantees [106], but is by

no means the only applicable paradigm. Conventional busses and mixed NoC-and-

bus interconnects are all acceptable, as long as their behaviour is predictable, e.g.

they can be modelled as latency-rate servers [90]. This is especially relevant when

extending systems fromMPSoC to SiP and even to multiple chips on a pcb.

1.3.3 on-line resource management

Generally, spatial resource management is the allocation of spatial resources to

applications. In the context of tiled systems, spatial resources are HwEs and com-

munication resources. Thus, spatial resource management is the assignment of

tasks and channels from the application’s task graph to tiles and the interconnect,

respectively. The assignment of all tasks and channels of an application is called

an execution layout. A feasible execution layout satisfies the application’s QoS con-

straints. An execution layout’s quality depends on the extent to which it optimizes

resource usage and extra-functional costs like energy consumption. The quality of

a spatial resource management algorithm depends on the trade-offs of the platform

on which it is used, but is typically a combination of response time, all execution

layouts’ qualities and the success rate of finding execution layouts for applications.

A downside of heterogeneous tiled systems is that even when only a few HwEs are

allocated to applications, there may be no more HwEs of the correct type available

to execute a specific task of the application being started. When there are differ-

ent types of HwEs with the same functionality (e.g. different types of processors,

memories with different types of communication assists, etc.), the same task can be

implemented for different types of HwEs. Having multiple implementations for the

same tasks thus increases the flexibility of the resource allocation in a heterogeneous

system. Even when an additional implementation of a task is less energy-efficient,

the application’s overall energy-efficiency might still benefit from its use, when

the closest (in terms of the interconnect) available HwE required for the preferred

implementation is far away. The same holds for the latency imposed by computa-

tion and communication. For sufficiently large systems, communication costs (in

terms of latency or energy) might supersede the added computation cost from a

less efficient implementation on a nearby HwE.

In our context, the objective of the spatial resource management is to minimize the

energy consumption of the entire application: processing, storage (i.e. memory)

thesis April 1, 2010 14:45 Page 8 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

8

1.3
.3
–
O
n
-l
in
e
r
e
so
u
r
c
e
m
a
n
a
g
e
m
e
n
t

and communication. In principle, the spatial resource management is performed

only when a new streaming application is started. This does not strictly exclude

dynamic structural changes in an application, e.g. when the signal of a wireless

broadcast degrades, the control system of a receiver may be specified to start an

extra error-correction task. When new tasks are dynamically added to an applica-

tion, the execution layout of tasks already running is a constraint for the resource

management of the new tasks. An important assumption for on-line spatial resource

management, though, is that applications are quasi-static, so that the benefit of the

flexibility gained outweighs the added cost of the on-line resource management.

Furthermore, on-line spatial resourcemanagement algorithmsmust be fast, because

start-up time is often bounded by the application as well (e.g. answering a ringing

phone).

To be able to perform the resource management of an application, a spatial re-

source management algorithm needs a model of the hardware platform and, for

the application, the task graph with the corresponding QoS constraints and avail-

able implementations of the tasks with their resource requirements, energy costs

and behavioural bounds. Some performance figures can already be determined

at design-time, e.g. the execution time and energy consumption of various im-

plementations of tasks on specific HwE types. However, some figures can only

be determined for a running system. This requires simple performance models

(simple in the computational sense, since there may be tight constraints on the time

required to find the execution layout).

Performing the spatial resourcemanagement on-line implies that fewer performance

figures can be determined at design-time. It is, after all, only known after the

resourcemanagement onwhichHwE a taskwill be executed, whichmeans that inter-

task communication parameters (e.g. latency, energy consumption), for example,

need to be determined when starting the application. Likewise, it is only known

at application start-up which tasks are already running on a HwE. Therefore, the

response time of a task is only known after the on-line resource management has

taken place. On-line resourcemanagers and schedulersmust not just guarantee their

own QoS constraints, but also guarantee that the overall constraints of applications

are not violated. This requires schedulers to be asynchronous servers with bounds

on preemption [16]. However, the on-line choices are restricted to a finite set of

implementations, all of which have properties that are determined at design-time.

Whether an application fullfills all its constraints can only be fully checked after

its execution layout has been determined. We use a dataflow analysis [33, 104] for

this check, which is beyond the scope of this thesis. As previously stated, only an

execution layout that lets the application meet its QoS constraints is considered to

be feasible.

thesis April 1, 2010 14:45 Page 9 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

9

C
h
a
p
t
e
r
1
–
In
t
r
o
d
u
c
t
io
n

1.4 Coordination language SNet

In this section, we discuss concepts of SNet, an asynchronous stream coordination

language. These concepts are required for asynchronous combinatorial stream

programming.

1.4.1 asynchronous combinatorial stream programming

Networked stream programming goes back to Kahn’s networks [50] which are

fixed graphs with message streams flowing along the edges and stream-processing

functions placed at the vertices. The importance of this type of computing is in its

simple fixed-point semantics and the static nature of task distribution (discussed

above). It is due to these characteristics that networked stream programming is

used widely in control systems (for example the Airbus software [13] is written in a

stream processing language esterel [11]). However, with the advent of multicore

systems and especially large, heterogeneous, many-/multicore architectures, the

synchrony found in most programming tools of this kind will become more and

more of a limiting factor for throughput and utilizationmaximization. Consequently

asynchronous stream-processing languages, such as SNet [37] are likely to prove

to be useful. The principles behind asynchronous stream-processing can be found

in [86]; here we only restate some ideas required to understand the work presented

in this thesis.

mimo vs. siso

Figure 1.1(a) shows an arbitrary streaming network, where vertices are functions of

multiple streams producing multiple streams (the top diagram). This is referred to

as mimo. For simplicity, the network is assumed to be acyclic. The input stream α
is split by the vertex In into streams carrying messages that are intended for specific

input ports of individual vertices. The output of the graph is gathered by the vertex

Out into a single output stream. Assuming that the vertices can respond to the input

messages on different ports irrespective of their mutual timing (the assumption

of asynchrony), multiple input streams to a vertex can be merged into one, where

the messages themselves are labelled with the port information. Similarly multiple

output streams could be labelled andmerged in such a way. Thus, any asynchronous

mimo network can be rewritten to a siso network. The example network is rewritten

in figure 1.1(b).

In the rewritten network, the black bullets are non-deterministic stream mergers

and the circles are splitters. The position of a vertex in the rewritten network

is determined by the longest path to that vertex from the network input in the

original network. Bypasses (identity functions) are added when a vertex requires

messages from not-immediately-preceding stages. The topology of siso networks

can be constructed with algebraic expressions, with networks as operands and

thesis April 1, 2010 14:45 Page 10 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

10

1.4
.1
–
A
sy
n
c
h
r
o
n
o
u
s
c
o
m
b
in
a
t
o
r
ia
l
st
r
e
a
m
p
r
o
g
r
a
m
m
in
g

in

7

5

6

4

3

2

1

out

(a) Multiple Input Multiple Output (mimo) network

7

5

6

4

3 1

2

(b) Single Input Single Output (siso) network

Figure 1.1 – A mimo network and its equivalent siso network

A

(a) Cyclic network

A A A

(b) Unrolled network

Figure 1.2 – Unrolling

combinators as operators. Any (valid) expression of this form is again a siso

network. Two combinators are used in figure 1.1(b); serial and parallel composition.

SNet provides more than these two combinators; they are described in section 6.2.

Cyclic vs acyclic

Streaming networks are generally cyclic. For synchronous systems with guaranteed

resource bounds, cyclic topologies form constraints on resource management [104].

In asynchronous systems, however, cycles in the topology are unbounded cyclic

data-dependencies. Cyclic data-dependencies give rice to deadlock and starvation,

if resource requirements can not be anticipated. To mitigate the effects of such

cyclic dependencies, feedback loops (see figure 1.2(a)) can be converted to infinite

thesis April 1, 2010 14:45 Page 11 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

11

C
h
a
p
t
e
r
1
–
In
t
r
o
d
u
c
t
io
n

feed-forward topologies (see figure 1.2(b)). This conversion is based on unrolling.

For every consecutive visit of a vertex, a separate vertex is instantiated. Instead of

feedback loops from a vertex to itself, edges are drawn from a vertex to the vertex

representing the next visit. Feed-forward structures expose parallelism, similar

to loop unrolling, and thus may be desirable for that reason as well. There is a

combinator in SNet for such unrolling feed-forward networks (such as the one

shown in figure 1.2(b)).

1.5 Structure of the thesis

This thesis consists of two parts. The first part discusses the work on on-line spatial

resource management, coming from an embedded systems perspective. The second

part discusses the work on SNet, coming from an hpc perspective. Conclusions

and recommendations for future work are combined in the chapter 8 after part two.

Part one is divided over four chapters. Chapter 2 describes the state-of-the-art as

discussed in related work. Next, in chapter 3, a formal definition of the problem of

on-line spatial resource management and an initial introduction into our solution

is given. Chapter 4 discusses our solution and a proof-of-concept implementation

of an on-line spatial resource manager. In chapter 5, experimental results for our

proof-of-concept implementation are presented and discussed.

Part two contains two chapters. The first, chapter 6, presents a denotational seman-

tics for the language SNet. The second, chapter 7, presents a novel run-time system

for SNet.

thesis April 1, 2010 14:45 Page 12 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

thesis April 1, 2010 14:45 Page 13 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Part I

Synchronous Dataflow

thesis April 1, 2010 14:45 Page 14 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

thesis April 1, 2010 14:45 Page 15 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Ch
ap

te
r2

State-of-the-Art

Abstract – On-line spatial resource management is a relatively new re-
search area. As such, the state-of-the-art is not yet clearly defined. Therefore,
the literature discussed in this chapter covers partial solutions and weakly
related areas. We focus especially on solutions for heterogeneous systems.
Because the applications suitable for on-line spatial resource management
must adhere to strict constraints, some design-related literature is examined
as well.

2.1 Introduction

The detailed design of an application, including the partitioning into communicating

tasks and the implementation of those tasks, results in an application specification.

Such a specification includes resource budget requirements and QoS constraints.

Concurrent programming of applications is a non-trivial practice. It starts with task

decomposition. Task decomposition requires not only concurrent programming

of an application, but also a sensible grouping of the program into tasks, such

that their resource requirements and their performance are predictable and well

balanced. This means that the programmer should have a good knowledge of the

underlying parallel architecture. After task decomposition, for the resulting task

set, resource scheduling, communication specification and synchronization still

have to be carried out, all of which may be subject to deadlocks or race conditions.

These are responsibilities unique to concurrent design.

thesis April 1, 2010 14:45 Page 16 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

16

2
.1.1

–
A
p
p
l
ic
a
t
io
n
sp
e
c
if
ic
a
t
io
n

Some attempts aremade to automate the process of task decomposition of sequential

programs, e.g. [70, 98], but manual development is still the ruling paradigm. In

general in concurrent design, but especially in resource scheduling, there is a

trade-off between multiple, conflicting objectives, like performance levels and costs.

Applyingmulti-objective optimizationmay lead to a set of locally optimal solutions.

In this context, the Pareto set is the set of all solutions that have at least one objective

with regards to which they can not be improved without worsening them with

regards to another objective [89]. Ykman-Couvreur et al. [107, 108] use design-

time exploration to construct a Pareto set that contains multiple implementations

of an application. Such design-time exploration of implementation alternatives can

also be performed on a per-task basis, after task decomposition. Figure 2.1 shows

an example for which each implementation—depicted as a dot—is characterized by

a Pareto-optimal combination of performance constraints, resources requirements

and costs. The result of this design-time exploration can be used as input for a

resource manager.

Implementation

Performance levels
» throughput
» latency
» . . .

Resource requirements
» number of processors
» memory
» communication bandwidth
» . . .

Costs
» energy consumption
» wear levels
» . . .

Figure 2.1 – Design-time exploration of the application resulting in various implementations

(taken from [107])

2.1.1 application specification

A streaming application, decomposed into tasks with communication between

the tasks, can be represented as a dataflow model. Dataflow is a very common

modelling technique for embedded and real-time application engineers [48]. More

specifically, Synchronous Data Flow (sdf) graphs [61, 62] are widely used to specify

applications, for example in [58]. An entire application can be specified with an

sdf graph, where the nodes in the graph represent individual tasks. The edges

thesis April 1, 2010 14:45 Page 17 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

17

C
h
a
p
t
e
r
2
–
S
t
a
t
e
-o
f
-t
h
e
-A
r
t

between the nodes model the communication channels between the tasks of the

application. sdf graphs are a subclass of Petri nets [77, 78]. In this class, firing

rules are independent of data values, so that the execution order can be determined

at compile time. This ordering allows for a semi-static scheduling strategy, where

processor assignment can be determined when starting the application. The use of

sdf is discussed in more detail in section 2.4.

2.1.2 performance guarantees and multi-tasking

Most forms of multitasking require preemptive schedulers. Multitasking systems

with non-preemptive schedulers are commonly referred to as cooperative multitask-

ing systems. These systems lack composability, because misbehaving applications

can disrupt the QoS of other applications. A non-preemptive scheduler can be

used in single-tasking execution environments. Non-preemptive scheduling algo-

rithms are easier to implement than preemptive algorithms and also impose less

run-time overhead [47]. Applications in a non-preemptive scheduling context get

resources allocated and proceed to run without interruption. Guarantees of QoS

can be derived with straightforward analysis when there is no resource contention

between otherwise unrelated applications. This assumes that the resources assigned

at design-time suffice for the application. Typically, this leads to a low overall system

utilization.

To support multi-tasking with real-time constraints, dataflow analysis can be used

to derive schedules that guarantee that hard real-time tasks will meet their respec-

tive deadlines. Since exhaustive design-time analysis of all possible use-cases is

infeasible even for a relatively small application set, run-time scheduling and the im-

plications it has with regards to predictability and performance must be considered.

Schedulability analysis takes worst-case waiting times into account, resulting in a

very pessimistic result [58, 104]. Kumar et al. compare various analysis techniques

in [58]. They show that all the proposed techniques in the multi-processor domain

that provide guarantees, have a low utilization. The same work presents a technique

that improves utilization, by sacrificing the ability to provide hard real-time perfor-

mance guarantees. Analogously to the work of Kumar et al., most known solutions

that support multi-tasking do not provide hard real-time guarantees.

Wiggers, et al. [103] show that the accuracy of the analysis can be improved by

modelling run-time scheduling of shared resources with latency-rate servers [91].

Examples of suitable scheduling algorithms for dataflow analysis are Time Divi-

sion Multiple Access (tdma) and round-robin, both of which are latency-rate

schedulers [104]. The above authors all recognize the trade-off between increasing

scheduler complexity on the one hand and increasing flexibility and utilization

on the other, when increasing the allowed amount of resource sharing, e.g. in

multi-tasking.

thesis April 1, 2010 14:45 Page 18 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

18

2
.2
–
P
r
e
r
e
q
u
isit

e
s
f
o
r
o
n
-l
in
e
spa

t
ia
l
r
e
so
u
r
c
e
m
a
n
a
g
e
m
e
n
t

2.2 Prerequisites for on-line spatial resource management

It is common practice in the design of run-time reconfigurable MPSoCs to have a

centralized operating system to control the entire MPSoC. Such a system runs on

one pe. Other pes may also run some form of light weight operating system, but the

control over the MPSoC as a whole typically resides in the centralized operating

system. This includes the system’s resource manager. Faruque et al. argue that such

centralized Run-time Spatial Resource Management (rsrm) does not scale well into

the domain of MPSoCs that consist of hundreds or thousands of pes [31]. MPSoCs

in production today, typically include considerably less pes, e.g. [21]. Even in the

research field, multi-processor chips approaching one hundred pes are typically

homogeneous (to exploit regularity) [97]. Although the scalability concerns raised

in [31] are valid, they seem a long time away from being relevant to today’s real-life

systems.

In [31], Faruque et al. propose a distributed solution that uses a two-step approach.

An application is first assigned to a cluster of pes with sufficient available resources,

after which a cluster agent solves the original problem in a centralized way, but

reduced to the pes under its management. The work presented in this thesis does

not scale to the type of systems dealt with in [31], but could be used as such a cluster

agent.

When a new application is started, the rsrmmust select suitable implementations

for (tasks of) the application. What constitutes the most suitable implementation

depends on the current state of the MPSoC, the optimization objectives and QoS

constraints to which the application is subject. The rsrmmust guarantee that the

resource requirements of the application can be fulfilled, before the application

is admitted. There is an increasing number of scenarios in which the number of

use cases is unconstrained at design-time. For example, any MPSoC that is used

as a user platform, i.e. the user can download and start an application at any time.

For such scenarios, clairvoyant design-time resource management is not possible.

At arbitrary time points, applications are added to the MPSoC, as done in [19].

Decisions made by the rsrm for newly started applications may not degrade the

performance of applications already running below their QoS constraints. More

precisely, a rsrmmust adhere [58, 68] to the following conditions:

1. admission control: an application is only allowed to start if the system can

allocate, upon request, the resource budget required by any of its tasks to

meet the application’s QoS constraints.

2. guaranteed resource provisions: an already running task may never be denied

access to its allocated resources by any other task.

If an application can not be added to the system without violating above conditions,

the application must be rejected. To resolve such a rejection, either the application’s

QoS level or the platform state have to be changed. Approaches for dynamic

choices of resource requirements of applications are discussed in more detail in

thesis April 1, 2010 14:45 Page 19 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

19

C
h
a
p
t
e
r
2
–
S
t
a
t
e
-o
f
-t
h
e
-A
r
t

section 2.3.1. The platform state can be changed by stopping running applications

(that are considered less critical) or by migrating tasks.

2.2.1 live task migration

Allowing a resource manager to migrate running tasks from one pe to another fur-

ther increases flexibility. It improves load-balancing, increases resource allocation

success rate and makes resources reclaimable when QoS requirements decrease for

a running application. Another advantage is that pes can be periodically cleared to

perform dependability tests [57].

Load-balancing in modern high-end virtualization servers for enterprise systems

is based largely on hardware supported live task migration [26]. The granularity

of tasks, in this case, however, is considerably larger: Entire virtual machines are

migrated at once. The term “seamless migration” is used in this context—e.g. in

[95]—to indicate that a user of the virtualmachine does not experience performance

degradation during migration. QoS guarantees are typically not given. Hetero-

geneity is typically limited to processors with different accelerators and instruction

set extensions around the same core instruction set, e.g. x86 processors with and

without sse3 extensions. Supported processors must offer uniform support for the

identification of their capabilities, such as the cpuid instruction requirement in

[99].

The application of virtualization techniques in state-of-the-art embedded systems

is limited, at best [46]. Providing a uniform abstraction like a migratable virtual

machine for a system with different processors of incompatible instruction set

architectures is hard. Overall efficiency under such abstractions is typically very low.

As an alternative, tasks can be made migratable by external intervention. In order

for tasks to be migratable, it must offermigration points, at which its state can be

extracted and moved to another pe. Nollet et al. [71] demonstrate a heterogeneous

system running migratable tasks. Requests for migration may be issued at any time.

The time between such a migration request and the moment the task arrives at

its migration point is referred to as the reaction time. When a migration point is

reached, the task’s state can be extracted from the pe the task is running on. If the

task is migrated to a pe of a different architecture, the run-time system (running

on its own pe) can translate the extracted state to a representation suitable for the

target pe. The (possibly translated) state is moved to the target pe and the task is

started (or resumed) on that pe. The time between the moment the migration point

is reached and the moment the task is started on the target pe is referred to as the

freeze time.

In many cases, it may be possible to bound both the reaction time and the freeze

time. Even so, the QoS constraints must be so relaxed and/or the resources so

overdimensioned to provide hard real-time guarantees, that this method is con-

sidered generally unfit for hard real-time systems. The freeze time degrades the

performance of the task being migrated, whereas the reaction time degrades the

thesis April 1, 2010 14:45 Page 20 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

20

2
.3
–
S
u
b
p
r
o
b
l
e
m
s

waiting time for the task that caused the migration request. The reaction time can

be reduced by increasing the number of migration points. However, [71] identify

the overhead of checking for pending migration requests at every migration point

as the main issue in task migration. They propose a hardware support task migra-

tion technique for heterogeneous MPSoCs. Having such a hardware constraint for

pes hinders integration of ip blocks from vendors that do not support (the same)

standard. Currently, there is no support for such techniques in compilers and other

design-flow tools.

In [109], experiments with the migration of various applications on an Arm ar-

chitecture are analysed. The total downtime due to migration ranged from 0 to

95 seconds, with an average of 22 seconds. Most of the downtime is consumed by

the serialization and deserialization of the task state at a migration point. Zhang,

and Pande, describe static compiler analysis methods [109] that optimize the state

representation for serialization. The typical performance degradation of tasks com-

piled with these methods is shown to be around 2%. The range of downtime was

reduced by thesemethods to a worst case of 36 seconds and an average of 8.5 seconds.

Even though these performance wins are considerable, downtime is still orders of

magnitude out of range for hard real-time embedded systems.

2.3 Subproblems

Four subproblems are commonly identifiable in works dealing with resource man-

agement for (embedded) multi-processor systems: partitioning, binding, mapping

and routing. Not all authors recognize all of these as relevant. The identification

of these subproblems and the recognition that together they describe the entire

problem of spatial resource management is a contribution of this thesis.

Works discussing homogeneous architectures do not discuss binding. Many authors

consider partitioning and binding as integrated design-time problems. Mapping

is considered in all related work, but for some it is a by-product of routing, e.g.

[19, 65, 87]. Some authors consider routing to be a trivial problem. In this thesis,

partitioning is considered as a design-time problem. Thus, work focussing on

partitioning is not discussed here. The remainder of this section discusses related

work for the three considered subproblems.

2.3.1 binding

Binding is the decision on what type of pe to run a task. In approaches where

hard- and software are developed simultaneously, binding is a hardware/software

co-design problem. Although work on performing just-in-time compilation (specif-

ically, just-in-time (re)targeting) is ongoing, e.g. [59], it is still uncommon in em-

bedded systems. Therefore, binding performed at run-time is constrained primarily

by the availability of multiple implementations for a task.

thesis April 1, 2010 14:45 Page 21 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

21

C
h
a
p
t
e
r
2
–
S
t
a
t
e
-o
f
-t
h
e
-A
r
t

Ykman-Couvreur et al. use a Multi-dimensional Multi-choice Knapsack Problem

(mmkp) formulation [107] to obtain a (near-)optimal solution to a binding type

of resource allocation problem. However, because an mmkp is np-hard and large

execution times and resource requirements are needed to solve this problem, ex-

act algorithms are not applicable for run-time resource management. Ykman-

Couvreur et al. discuss a fast heuristic for solving this mmkp. They reduce their

multi-dimensional resource requirements to (scalar) cost and tasks are sorted by

their cost. Then, a greedy algorithm selects minimum cost solutions for the tasks

in-order. Other works concentrate on a single cost parameter, e.g. energy consump-

tion [31] or execution time [72]. Using this single cost parameter, they also apply

greedy selection algorithms.

The only related work found in which systems are explicitly overloaded with regards

to the binding is [55]. In this work, Kim et al. evaluate heuristics for scheduling

tasks in a heterogeneous environment. They schedule only independent tasks, i.e.

without inter-task communication. They try to map the best subset of tasks onto

the platform. The lack of inter-task dependencies makes this inapplicable for the

type of applications discussed in this thesis.

Carvalho et al. consider binding a design-time problem. In [18], they identify two

classes of tasks: hardware tasks and software tasks. They use gpps for the software

tasks and bind the hardware tasks to reconfigurable logic or asics. Which tasks

are implemented in hardware and which in software is assumed to follow from the

application specification in [18].

Nollet et al. [72] combine the binding and mapping of tasks. For every task, Nol-

let et al. calculate the normalized execution time variance over all supported pes.

Tasks with a high normalized execution time variance are very sensitive to their

pe-assignment. Sensitive tasks should preferably be bound first. A task’s priority is

its execution time variance multiplied by its communication requirements factor.

Nollet et al. sort tasks by their priority. pes are sorted by their load and available

communication resources. Tasks are iteratively mapped to the best fitting pes. In

[72], reconfigurable hardware often has the highest preference. However, reconfig-

urable hardware is scarce in the system described. An ad hoc heuristic is employed

as a post-processor to minimize waste of this scarce resource. Because Nollet et al.

do not consider non-functional factors (e.g. energy consumption), the resulting

binding and mapping may have poor performance with regards to non-functional

factors.

2.3.2 mapping

Mapping is the decision onwhich pe to run a certain task. Most related work dealing

with mapping considers only homogeneous systems. For applications where the

binding is fixed, mapping usually seeks to minimize communication costs and

fragmentation.

thesis April 1, 2010 14:45 Page 22 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

22

2
.3
.2
–
M
a
p
p
in
g

As discussed above, no systems currently exist that allow task migration while

still guaranteeing QoS compliant behaviour. Therefore, a mapping is considered

fixed for the entire life-time of the application. Consequently, choices made for the

mapping of an application impose constraints for the mapping of any application

started later. When an application is started on a heavily loaded system, it may be

mapped to resources that are far apart from each other. Even if, consecutively, the

load on the system is reduced, this application still imposes constraints on the use

of a lot of resources. Simple linear allocation methods have been shown to cause

heavy fragmentation after a relatively short sequence of allocations [51].

Fragmentation can be split into internal fragmentation and external fragmentation.

Internal fragmentation is (the scattering of) unused capacity of resources to which

tasks are mapped. External fragmentation is the scattering of free resources among

resources to which tasks are mapped. Little explicit attention is paid to fragmenta-

tion in the literature. However, external fragmentation is a component in the cost

function for mappings in [64]. In [68], algorithms are “adjusted to fill up partially

filled pes” to reduce internal fragmentation.

Mapping heuristics

In some works, the low-complexity First Fit (ff) algorithm is used for the (initial)

mapping of tasks to pes. Moreira et al. [68] support multi-tasking by mapping every

task to an intermediate Virtual Tile (vt). Then, each VT is assigned to a pe, taking

communication channels into account and allowing multiple vts to be mapped

to a single pe. Moreira et al. describe an architecture with a ring-topology, where

every router on the ring is connected to three pes. As a consequence, bandwidth is

relatively scarce compared to the amount of computational power. Tasks with heavy

communication between them should preferably be mapped onto pes connected to

the same router. The authors’ First Fit with Clustering (ffc) algorithm is specialized

for the ring architecture compared with a general ff algorithm. Although the ffc

algorithm decreases bandwidth usage, it has an adverse effect on the mapping

success rate when the system becomes saturated [68]. Therefore, Moreira et al. use

an unclustered version of their algorithm when ffc fails.

Chou and Marculescu [19] apply a node colouring approach to the mapping prob-

lem. Initially, all tasks are coloured white. When a suitable candidate pe is found

for a task, that task is coloured grey. When a mapping of a task to a pe is chosen

and fixed, the task is coloured black. Tasks are grouped by the required pe type and

ordered by decreasing communication demands. Iteratively, for the first task from

the smallest pe-group, an available pe is sought of the correct type. This task is now

grey. If the neighbours of this task (in the task graph) are either grey or black, a

minimum distance pe of the correct type is sought, such that the distance to the

grey or black neighbours is minimal. Now the task is coloured black.

thesis April 1, 2010 14:45 Page 23 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

23

C
h
a
p
t
e
r
2
–
S
t
a
t
e
-o
f
-t
h
e
-A
r
t

Figure 2.2 – Clustering: Dashed lines denote the cluster limits [18].

Problem reduction: clustering

Carvalho et al. [18] propose a clustering approach to partition themapping problem.

They identify a master task in every application. The other tasks in an application

are slave tasks. The master task must issue requests for the mapping of the slave

tasks. It is shown that mapping the slave tasks at random can result in undesirable

mappings [18]. To promote locality of tasks of the same application, Carvalho et al.

define clusters of pes. These clusters may (partially) overlap. At most one master

task is mapped to a cluster. The slave tasks of a master task are all mapped in the

same cluster. An example, taken from [18], is shown in figure 2.2.

In this example, a system is divided into nine clusters, each consisting of nine pes.

Where these clusters overlap, the resource management for slave tasks of different

applications interacts, i.e. resource sharing is restricted to where clusters overlap.

Master tasks communicate with the Manager Processor (mp) to request and release

resources. When a master task requests resources for a slave task, a pe must be

selected from the master task’s cluster. Because resource management is centralized

in the mp, there are no race conditions for the pes that are part of multiple clusters.

In this system, slave tasks can be started and stopped any number of times. A strong

downside of this approach is that the number of master tasks (and thus the number

of applications) is limited by the number of clusters. The authors argue that this

constraint is required to prevent application deadlock when the system runs out of

resources.

The overall performance is very sensitive to the initial placement. How clusters are

chosen and how interactions with the environment occur (e.g. introduction and

thesis April 1, 2010 14:45 Page 24 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

24

2
.3
.2
–
M
a
p
p
in
g

termination of applications) is not described in [18]. Also, some responsibility for

bootstrapping the application is moved from the resource manager to the appli-

cation’s master task. This results in less distribution transparency and increased

communication overhead, which are both not desirable. Furthermore, QoS must

now be guaranteed by the master task.

Faruque et al. [31] also use clustering for resource management in large MPSoCs.

They describe a system with task migration capabilities. When an application is

started, a cluster negotiation algorithm is run. If no suitable cluster can be found

for the application, then task migration requests are issued to free resources in a

promising candidate cluster. If this also fails to provide a sufficiently large cluster, a re-

clustering algorithm negotiates between the candidate clusters and its neighbouring

clusters. It attempts to let these clusters exchange some pes. When this also fails,

the resource manager fails to find a mapping. For resource management inside

a cluster, Faruque et al. use the algorithm of Hansson et al. [41]. This algorithm

was originally developed for usage at design-time. The combination of a task and

a pe is assigned a cost, that is the sum of a four factors. The first is the average

distance of the pe to all other pes in the same cluster. The second is the cumulative

bandwidth requirement of the tasks’ communication on the pe. The third is the

cumulative resource requirement of the tasks on the pe. The fourth is the sum over

theManhattan distances between the alreadymapped neighbours (in the task graph)

of the task and the pe, multiplied per channel by the channel’s communication

volume. Unmapped tasks are sorted, first, by availability of pe types and, second,

by their bandwidth requirements. Iteratively, the lowest cost pair of task and pe

is chosen as a mapping. All other candidate pairs for the same task are discarded.

Faruque et al. [31] claim a lower complexity for their algorithm than that of Carvalho

et al. However, they do not give results in terms of performance measures.

Problem reduction: region selection

Chou and Marculescu [19] describe a mapping approach using region selection.

Their approach requires two cost factors: the dispersion factor and the centrifugal

factor. The dispersion factor of a pe is defined as the number of its neighbours

that are idling. The centrifugal factor of a pe is defined as the Manhattan distance

between it and any pe at the border of the region occupied by the application being

mapped. The cost associated with a pe is the sum of the dispersion factor and the

centrifugal factor. After the first task is mapped to a pe, a region is constructed by

selecting those pes around that first task’s pe that have the lowest cost. A simple

scenario is illustrated in figure 2.3 (taken from [19]). It shows that fragmentation

is significant after mapping the two applications (figure 2.3(a)) using a greedy

algorithm (figure 2.3(b)). Using region selection (figure 2.3(c)) the fragmentation is

significantly reduced.

Region selection steered mapping prefers pes that have a high probability of becom-

ing isolated. This is due to the dispersion factor. When most of a pe’s neighbours

thesis April 1, 2010 14:45 Page 25 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

25

C
h
a
p
t
e
r
2
–
S
t
a
t
e
-o
f
-t
h
e
-A
r
t

1

2 3 4

5 6

7

1 3 6

4 2 5

application 1 application 2

(a) Two applications that have to be mapped

communication costs: 6 + 12 = 18

1 3 2

4

5

6 7

1 3 2

4

5

6 7

2 5

3 6

1 4

(b) Greedy mapping algorithm

communication costs: 7 + 8 = 15

1 3 2

46 5

7

1 3 2

46 5

7 3 6

2 5

4 1

(c) Region selection steered mapping

Figure 2.3 – An example of two approaches in incremental application mapping on a het-

erogeneous MPSoC, where both the degree of fragmentation and communication costs play

a role. Black circles indicate tasks already active. Shading of pes indicates their type. Tasks

are shaded according to the required pe type. Communication costs are expressed in terms

of distance.

thesis April 1, 2010 14:45 Page 26 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

26

2
.3
.3
–
R
o
u
t
in
g

have tasks mapped onto them, that pe has a low dispersion factor. The centrifugal

factor adds preference for application mappings with high locality, i.e. when tasks

are mapped closer together, the centrifugal factor is lower.

After a region has been selected with sufficient pes to map the application, the

resource manager must map the tasks to the pes in the region. Effectively, region

selection has reduced the size of the mapping problem, but the principle problem

remains the same. In [19], computational experiments show that region selection

is able to reduce inter-task communication overhead with 25%, but these results are

biased towards dense task graphs. Sparse task graphs win considerably less from

reducing the total distance between all tasks, i.e. the span of the selected region.

Unfortunately, the authors do not evaluate the mapping success rate, which we

expect to increase when the degree of fragmentation is lowered.

2.3.3 routing

For systems with network-based interconnects between pes, inter-task communica-

tion must be routed through the interconnect. For routing on the scale of systems

considered in this thesis and the related work, there are many algorithms available.

Execution times of these algorithms for networks with tens or a few hundred nodes

are not significantly different [54]. The choice for a good routing algorithm depends

mostly on the required capabilities (whether edges are weighted, whether weights

can be negative, whether a strong heuristic can be derived from the network struc-

ture) [28, 32, 45]. However, the constraint that communication resources must have

predictable behaviour [52, 106] and resource management must guarantee QoS is

relatively new. A popular form of on-chip interconnect is the NoC [10].

A NoC has a limited number of physical links between each pair of routers. How

the finite communication capacity offered by the physical links is shared among dif-

ferent channels depends on the router architecture. In embedded systems, however,

time-sharing the physical links is a popular approach. One way to implement time-

sharing is by performing arbitration on the output of a router [52, 106]. Another

way is by implementing static schedules [35]. Time slots on these physical links are

often grouped into so called virtual channels [54]. Per inter-task communication

channel, a resource manager can allocate one or more virtual channel(s) through

every physical link and router on a route from a source pe to a target pe. Depend-

ing on the router architecture, assigning more virtual channels may make more

bandwidth available, or give the corresponding channel a higher priority, lowering

the communication latency. Most NoC architectures offer only a limited number

of virtual channels per physical link. This means that the number of connections

(regardless of e.g. bandwidth requirements) is usually limited.

Commonly, NoC architectures guarantee a lower bound on throughput and most

offer an upper bound on latency. Guaranteed throughput typically comes at the

expense of very low utilization, although research to improve utilization under

guaranteed throughput is a topic of research (e.g. [66]). Guarantees are generally

thesis April 1, 2010 14:45 Page 27 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

27

C
h
a
p
t
e
r
2
–
S
t
a
t
e
-o
f
-t
h
e
-A
r
t

provided from the router upwards. It is often hard to derive from local guarantees,

properties of the behaviour of the network as awhole. Exploration ofNoCbehaviour

is a time consuming simulation process. We have contributed some work to the

field of accurate and fast simulation of large NoC (based) systems, that are not

discussed in this thesis, but rather referred to as related work [PhH:10, 11, 12] .

Resource managers must be aware of the capabilities and limitations of the NoC ar-

chitectures under their control. Routing communication channels depends strongly

on previously routed channels, i.e. applications already running. When the capac-

ity of a physical link between two routers is completely consumed, an alternative,

usually longer route may work around this network congestion. This is a suitable

solution to fulfil the bandwidth requirements. However, latency constraints are

very sensitive to longer routes. Therefore, latency constraints are often given a

higher priority than bandwidth constraints. Srinivasan and Chatha [87] have a

priority based policy in their solution for design-time routing on NoC architectures.

They guarantee that channels with tight latency constraints are given priority over

channels that may have high bandwidth requirements, but that have very relaxed

latency constraints. Every communication link c that must be routed is ordered to

descending priorities:

ρ(c) = bandwidth(c)
latency(c)k

The integer k is determined, such that the communication link with the highest

bandwidth requirement, c i , has a lower priority than the link with the tightest

latency constraint, c j :

bandwidth(c i)
latency(c i)k

≤
bandwidth(c j)
latency(c j)k

Alternatively, Chou and Marculescu [19] define an architecture that has separate

networks for data and control. These networks are separated to ensure that data

transmission does not interfere with the control messages generated by the Operat-

ing System (os), because in their applications, control messages are more sensitive

to latency. In their resource management, routing is not considered, because tasks

are only mapped to pes when the bandwidth requirements are met. Chou and

Marculescu do not explain how this check is performed.

In [18], the utilization of the NoC is measured using mapping heuristics. The

NoC topology, the routing algorithm and the communication delays are modelled,

to compare different heuristics. The best performing mapping heuristic is “Path

Load”, which minimizes the requirement for the links of the NoC for each new task

inserted into the system.

Moreira et al. [68] use a NoC architecture that requires static schedules for every

router. They use a network graph model that models time slots as independent

vertices. To model one router, as many vertices are added as there are time slots

thesis April 1, 2010 14:45 Page 28 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

28

2
.4
–
V
a
l
id
a
t
io
n

in that router. To route from one time slot to the next in the same router, implies

that data must be stored for one cycle. This means that the router’s buffer capacity

forms a constraint to the maximum number of transitions from one time slot to

the next in the same router. When a route passes from one time slot in a router

to the next time slot in another router, the single-cycle communication delay is

modelled. This approach reduces path finding and slot allocation to a single problem,

at the cost of a larger and denser network graph. The problem of finding several

paths in this network graph is known as the Directed Edge-Disjoint Paths Problem,

which is known to be NP-complete [39]. Because of this prohibitive complexity,

Moreira et al. [68] route channels incrementally instead. What percentage of the

bandwidth can be reserved depends on the control overhead introduced by the

resource manager.

2.4 Validation

Even if enough communication resources are allocated to the application, the

question remains whether the application performs well enough. The QoS of an

application, given a binding, mapping and routing, must be validated. Validation is

not required for applications that do not have any performance constraints.

In [58, 68], an application is specified as an sdf graph. Kumar et al. [58] evaluate

the performance of an application mapped to a MPSoC platform. A combined

model of the platform and the application can generate performance figures, such

as throughput and processor utilization. These results are obtained at design-time,

and are used to create a resource manager. The resource manager then monitors the

applications at run-time, and intervenes to ensure that all the application are able

to meet their throughput requirements. It is, however, not guaranteed that every

constraint is honoured at all times.

All related work on validation methods is still used at design-time. In chapter 4 we

discuss some related work that we use to realize the validation phase at run-time.

That approach uses sdf graphs as well.

2.5 Optimization criteria

In streaming applications, the QoS level is a given constraint. Nothing is gained by

optimizing the resource management to provide a better QoS level than required.

Optimization of resource management consequently involves optimizing the run-

time of the resource management itself and/or properties of resource management

other than QoS.

For comparison of proposed algorithms, performance measures are needed. In

some works [31, 107], computational effort is regarded as a performance measure.

However, we consider algorithm complexity a design constraint like in [87], rather

thesis April 1, 2010 14:45 Page 29 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

29

C
h
a
p
t
e
r
2
–
S
t
a
t
e
-o
f
-t
h
e
-A
r
t

than an optimization criterion. A meaningful constraint on the start-up delay of an

application allows at least ten milliseconds, as this is the order of start-up delays

in a Linux OS [19, 107]. This is due to the interrupt timer being set to 100 Hz.

Depending on the target platform, this tight constraint may be relaxed. An upper

bound on the start-up delay is that a solution must be computed faster than the

anticipated average arrival rate of new applications [55]. As this period is relatively

long in embedded systems, it is not a realistic estimation of the acceptable delay that

may be introduced by the resource manager. We claim that no universal constraint

can be formulated in terms of start-up delay.

If it is possible to fulfil the request to execute a certain application, the system has

to allocate the resources to that application, no matter what costs are involved. At

the point where the system becomes saturated, both the availability of resources

and the fragmentation degree of resources determines whether a next application

is still mappable. Benchmarking the algorithm with numerous scenarios, as done

in [68, 72, 87], gives an estimation of themapping success rate. We think that this

rate is the most important factor for measuring the quality of solutions. Given a

constant success rate, we can optimize the solution towards other performance

measures, e.g. energy consumption or resource usage.

We mentioned in this chapter that energy consumption is the main motivation

of heterogeneous platforms. However, estimating energy consumption is very

complex, due to the many relevant factors [8]. This is illustrated by the fact that all

works that consider energy consumption use different energy consumption models.

For example, Wolkotte et al. present in [105] some energy models that compare

two NoC architectures with a shared-bus architecture. The derivation of those

models shows that the final equation is highly dependent on the architecture and

the technology of implementation. The advantage of such an equation, is that once

it is derived, it is rather simple to use. However, if we do not want to know absolute

energy consumption values, we can simplify the energy model in [105] by stating

that less hops in the NoC cost less energy. Unfortunately, for the most important

decision that takes energy consumption into account, the binding decision, it is

unclear what energy model could be used as an optimization criterion.

2.6 Conclusion

It is hard to compare the various approaches described in this chapter in qualitative

terms. We think that there is a need for a generally applicable algorithm, that can

be fine-tuned by specific objective functions. In chapter 4, we describe heuristics

for each resource management subproblem. At various points, these heuristics can

be instructed to optimize towards some objective, such as high performance or low

energy consumption.

thesis April 1, 2010 14:45 Page 30 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

thesis April 1, 2010 14:45 Page 31 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Ch
ap

te
r3

On-line spatial resource management

Abstract – A formal definition of what constitutes on-line spatial resource
management is given in this chapter. To this end, all platform hardware
and application software is modelled and the minimum requirements of
both are made explicit. The concept of execution layouts—the results
of on-line spatial resource managers—is introduced. Qualitative criteria
are discussed, by which resource managers and execution layouts can be
compared. Finally, the heuristic approach described and evaluated in more
detail in the following chapters is introduced and related to the formal
definition.

3.1 Structural Definitions

In this section, we describe the structure that combines individual components into

a system. Only the relations between components are taken into account here, as

opposed to their state. The latter is discussed in section 3.2.

3.1.1 hardware platform

As mentioned in the introduction of this thesis, there are many kinds of spatially

partitioned systems. In the domain of embedded architectures, the most common

Parts and earlier revisions of this chapter have been published in [PhH:2, 3, 4].

thesis April 1, 2010 14:45 Page 32 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

32

3
.1.1

–
H
a
r
d
w
a
r
e
p
l
a
t
f
o
r
m

Bus

BusCtrlA

InterfaceA

Arm

Memory

BusCtrlM

InterfaceM

Com. assist

Memory

NoC-Bridge

Router1

Router3 Router2

Interface3

DSP3

Interface2

DSP2

Interface1

DSP1

Figure 3.1 – The hypergraph representation of the example architecture.

occurrance of such systems are MPSoC. In this section, we give a formal model

of such hardware systems, which we shall refer to as platforms. The model is kept

sufficiently general to cover a large class of platforms; those that can be managed by

on-line spatial resource managers.

Any resource that can perform a (e.g. computational) task is called a HwE. The class

of components grouped in the term HwE is a larger class than the more commonly

used pe (see chapter 2). HwEs also include, for example, memory and i/omodules.

Communication between HwEs is facilitated by the platform’s interconnect. This

interconnect consists of routers, connected to each other by links. Even though

the terminology stems from the NoC paradigm, interconnects are by no means

restricted to NoCs. The term ‘router’ is used to denote any kind of interconnection

element that controls the direction in which data flows, e.g. NoC-routers, NoC-to-

bus bridges, bus interfaces, etc.

To clarify notation, consider the example architecture depicted in figure 3.1. This

platform is heterogeneous with regards to HwEs, routers and links. The routers

and the bidirectional connections between them, together form a NoC. Therefore,

a NoC-bridge is required to connect the bus and the NoC. The bus controllers,

NoC-bridge and routers depicted, are all modelled as routers, since they all in-

fluence the direction of data streams in the interconnect. The bus shown allows

communication between all connected components, but all communication shares

the bus as a single resource. Therefore, the bus should be represented by a single

object—in this case, a single link—in our formal description. The same single

object representation requirement holds for the bidirectional connections depicted

in the NoC between the dsps. On the other hand, both connections between the

NoC-bridge and the NoC are unidirectional. Thus, the representation of links

thesis April 1, 2010 14:45 Page 33 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

33

C
h
a
p
t
e
r
3
–
O
n
-l
in
e
spa

t
ia
l
r
e
so
u
r
c
e
m
a
n
a
g
e
m
e
n
t

NoC-
Bridge

BusCtrlA

BusCtrlM

Arm

Memory

Router1

Router2

Router3

DSP1

DSP2

DSP3

HwE

router

hyperedge

interface

Figure 3.2 – The hypergraph representation of the example architecture.

should reflect direction. Because of these requirements, we use hypergraphs to
model interconnection. Hypergraphs are a generalization of graphs, where edges

(referred to has hyperedges) can connect more than two vertices. A hypergraph is

undirected, if hyperedges are described by a set of vertices. A hypergraph is directed,
if hyperedges are described by pairs of sets of vertices, viz. a ‘from’ set and a ‘to’ set.

Formally, an interconnect is represented by a directed hypergraph N = ⟨R, L⟩, where
R is a set of routers (vertices) and L ⊆ PR × PR (where P denotes the powerset) is a

set of links (directed hyperedges) between routers. Links are defined as hyperedges,

so that both busses and bi-directional point-to-point links can be expressed in this

model, besides ‘simple’ unidirectional point-to-point links.

To further describe a platform, let E be a set of HwEs and F ⊆ E × R be a set of

interfaces of HwEs with routers. Interfaces allow bidirectional communication. A

platform P now is a quadruple ⟨E , R, F , L⟩, which, again, is a hypergraph: ⟨E ∪
R, F ∪ L⟩. Note that, following from this definition, there are no direct connections

between HwEs. Furthermore, we assume that P is weakly connected, i.e. there are
no unconnected subgraphs.

The example architecture given in figure 3.1 can now be modelled in the way de-

scribed above. The resulting hypergraph is depicted in figure 3.2. Names in the

model must be unique, therefore the bus controllers of the memory and the Arm

were renamed (to BCM and BCA, respectively), and the routers of the NoC, the

dsps and their interfaces (names not depicted in figure 3.2) are numbered. The

hyperedges, representing links between routers, are shown in grey. Interfaces are

shown as bidirectional double arrows. This figure shows the difference between

busses, bidirectional links (between the routers) and unidirectional links (between

the NoC-bridge and router one).

thesis April 1, 2010 14:45 Page 34 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

34

3
.1.2

–
S
o
f
t
w
a
r
e
a
p
p
l
ic
a
t
io
n
s

3.1.2 software applications

An application is represented by a directed graph A = ⟨T ,C⟩, where T is a set of

tasks and C ⊆ T ×T a set of channels between tasks along which tasks communicate

with each other. Tasks are functions mapping input streams to output streams.

Implementations are realisations of tasks. In other words, implementations are

executable units that compute the function of their corresponding task, i.e. for any

task t ∈ T and a corresponding implementation i ∈ I, the semantics of i is t.

Several implementations may exist for a task. The compatibility of implementations

and HwEs is guaranteed by their types. We say that implementation i and HwE e
have the same type, denoted τ(i) = τ(e), if and only if i can be executed on e given
sufficient resources are available. For example, when program code is compiled

for a specific instruction-set processor, the resulting binary—in this context, this

is precisely one implementation—can only be executed on HwE that support the

instruction-set the binary requires. Because the platform may contain HwEs of

different types, adding implementations for a task gives more flexibility to the on-

line spatial resource manager. For a task t, there need not be implementations for

every type of HwE. The set of implementations for task t is denoted by I(t). The

subset Iτ(t) ⊆ I(t) denotes the set of implementations of t that can be allocated to

HwEs of type τ.

3.1.3 paths

To run an application, for every task one implementation has to be chosen and this

implementation has to be mapped onto a single HwE. If two tasks are connected

by a channel, the channel must be mapped to a sequence of components of the

interconnect, that allow a communication between those HwEs, onto which the two

tasks are mapped. We introduce an abstraction of the interconnect to paths, so that
every channel from an application can be mapped to a single path. This abstraction

leads to a ‘higher order graph,’ in which edges are the paths in the platform.

Let L⋆ be the set of all cycle-free paths1 over a platform P = ⟨E , R, F , L⟩. Because
paths connect HwEs, a path starts and ends with an interface, connecting HwEs to

routers. The number of routers on a path is arbitrary (albeit ≥ 1), but between every

two consecutive routers there has to be a link. A path is only considered valid if

every consecutive pair of components (interface, router or link) is connected in P.
As a result, we get a pathed platform P⋆ = ⟨E , L⋆⟩, which is a directed multi-graph

(a graph that may have several edges between a pair of vertices).

1In a hypergraph, a path is described as an alternating sequence of vertices and edges. It is cycle-free,
if no two vertices occur twice in it.

thesis April 1, 2010 14:45 Page 35 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

35

C
h
a
p
t
e
r
3
–
O
n
-l
in
e
spa

t
ia
l
r
e
so
u
r
c
e
m
a
n
a
g
e
m
e
n
t

3.1.4 execution layout

If a software application has to run on a platform, we have to associate HwEs to tasks

and paths to channels. Clearly, this has to be done in such a way that the necessary

implementations exist and that the capacity of the platform is not exceeded.

An assignment function A is a function, which maps an application A to a pathed

platform P⋆. More precisely, for every task t ∈ T , A(t) is an HwE in E and for each

channel ⟨q, r⟩ ∈ C, A⟨q, r⟩ is an edge from A(q) to A(r) in L⋆. Where required,

the part of A that maps tasks onto HwEs is referred to as Aπ and the part of A that

maps channels onto paths is referred to as Aγ .

An implementation selector I ∶ T → I is a function which projects tasks onto

implementations. An execution layout L can now be defined as a tuple ⟨A, I⟩ of a
task assignment function A and an implementation selector I.

If a task t is assigned to an HwE of type τ, i.e. A(t) is of type τ, an implementation

of t for an HwE of type τ should exist and the implementation selector must select

such implementation. If this holds for all tasks in an execution layout, this execution

layout is considered adequate. In other words, an execution layout L = ⟨A, I⟩ is
called adequate, if and only if for every task t ∈ T it holds that I(t) ∈ Iτ(t), where
τ is the type of A(t).

3.2 Resources: Capacities & Requirements

All HwEs in platform P represent resources with finite capacities. One can think

of computational and memory capacities, but also of the maximum number of

tasks that can be assigned to it; e.g. asics can not switch between tasks, so they

have a maximum of one task, while an Armmay be able to serve as many tasks as

there are slots in its tdma scheduler. Next to the HwEs, the interconnect is also a

resource with finite capacities. Examples of such capacities for the interconnect are

link bandwidth, router tdma slots, number of virtual channels etc.

Thus, relevant (local) capacities of a platform can be expressed by capacity vectors.
Let CE(e), CR(r), CL(l) and CF(f) denote the capacity vectors of an HwE e, router
r, link l and interface f , respectively. All capacity vectors for the same kind of

elements (HwEs, routers, links and interfaces) are considered to be of the same

‘shape,’ i.e. every capacity vector of any HwE always has the same components2. For

simplicity, we assume vectors of independent components.

As an example, consider again the platform from figure 3.1 modeled in figure 3.2.

We now fill in the resource capacities of this platform. The numbers in this example

have been chosen arbitrarily, but do originate from real-world platforms. First of

all, the interfaces of this platform have so called ‘communication assists’ that serve

2In this context, ‘component’ refers to vector components, not to hardware components.

thesis April 1, 2010 14:45 Page 36 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

36

3
.2
–
R
e
so
u
r
c
e
s:
C
a
pa
c
it
ie
s
&
R
e
q
u
ir
e
m
e
n
t
s

Comm. Guarranteed Best

Assist Virtual Scheduler Throughput Effort

locks Channels Bandwidth budget streams streams

(CAL) (VC) (BW) (SB) (GT) (BE)

Interface1 2 3 1000 ⋅ ⋅ ⋅

Interface2 3 3 800 ⋅ ⋅ ⋅

Router1 ⋅ ⋅ ⋅ 20 3 4

Router2 ⋅ ⋅ ⋅ 15 3 5

Link1−2 ⋅ 4 1600 20 ⋅ ⋅

Table 3.1 – Resource vector examples

CAL

VC

BW

SB

GT

BE

SB

VC

BW

CF(Interface1) CR(Router1) CL(Link1−2)

Figure 3.3 – Resource vector examples (graphical representation)

as arbiters for the processing HwEs’s local memories and other on-HwE resources.

The number of locks for concurrent resource access in these communication assists

is limited, so the number of locks is a resource in interface capacity vectors. Next,

interfaces have limited bandwidth and a limited routing table, so they can only

service a limited number of virtual channels. Arbitration for links and routers is

performedwith budget schedulers [104] and so the scheduler budget for any channel

mapped onto them is limited. Finally, routers distinguish two types of virtual

channels: guaranteed throughput and best effort. These are modeled as separate

finite resource capacities. Table 3.1 shows the capacities of all the interconnection

components.

Capacity and requirement vectors can be represented graphically by radar charts.

The axes represent components from the vectors. Vector components that are

irrelevent to a type of HwE or interconnection component are omitted (i.e. since

routers in this example have the components SB, GT and BE, any CR vector is

depicted with these axes only). Figure 3.3 shows some vectors from the example

above.

As a dual to the notion of capacities of the hardware, software applications have

resource requirements, described by requirement vectors. For task t, every imple-

mentation i ∈ I(t) has a requirement vectorRI(i). Similarly, every channel c has a

thesis April 1, 2010 14:45 Page 37 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

37

C
h
a
p
t
e
r
3
–
O
n
-l
in
e
spa

t
ia
l
r
e
so
u
r
c
e
m
a
n
a
g
e
m
e
n
t

CAL

VC

BW

SB

GT

BE

CF CR

SB

VC

BW

SB

CALVC

BW

GT BE

CL CL⋆

Figure 3.4 – Resource vector compositing example (graphical representation)

requirement vectorRC(c).

3.2.1 composited and adjusted capacities

For the description of the proposed methods, it is helpful to have the notion of

‘capacity of a path p ∈ L⋆’. We denote such a capacity vector by CL⋆(p), where all
relevant capacities of routers, links and interfaces have an own component in this

vector. For a given path p ∈ L⋆, each component in CL⋆(p) represents the minimum

value for this component in the relevant elements of path p, e.g. bandwidth in bits

per second.

The example vectors given above can be used to illustrate composited vectors.

Consider the path from dsp1, via routers one and two, to dsp2. The full path

consists of the Interface1, Router 1, the Link between Router 1 and Router 2, Router

2 and the Interface2, respectively. The resulting vector is constructed graphically in

figure 3.4.

The dual of a capacity vector of a path is the requirement vector of a channel. The

vectors inRC have the same dimension as those in CL⋆ .

thesis April 1, 2010 14:45 Page 38 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

38

3
.2
.2
–
C
u
m
u
l
a
t
iv
e
r
e
q
u
ir
e
m
e
n
t
s

When an application is mapped to a platform, obviously, the resources assigned to

that application will no longer be available for the next application to be mapped.

This platform state is reflected in the capacity vectors. In other words, the capacity

vectors reflect the currently available capacity of the platform, rather than the capac-

ity of a platform after boot. On the other hand, when applications are stopped, the

resources assigned to them are added to the capacity vectors again.

3.2.2 cumulative requirements

The definitions so far only relate individual implementations and channels to re-

quirements. No definitions have yet been given to express the cumulative resource

requirements of a mapped application. For these definitions, the inverse of a task

assignment functionA is required. This inverse is defined in two parts: one part for

the assignment of tasks to HwEs and one part for the assignment of channels to

paths.

The inverse of the task assignment function with regards to tasks is defined as a

function from HwEs to sets of tasks:

Aπ
−1(e) = {t ∈ T ∣ Aπ(t) = e}

Using this inverse, the cumulative requirement S(e) imposed on HwE e by execu-
tion layout L = ⟨A, I⟩ can be expressed as

Sπ(e) = ∑
t∈Aπ

−1(e)
RI (I(t))

Analogously, the inverse of the task assignment function with regards to channels

can be defined as a function from paths to channels. However, since routers, links

and interfaces may occur in multiple paths, the cumulative requirement on a single

router may exceed that on any single path. Therefore, we define the cumulative

requirement Sγ as a function from either routers, links or interfaces, to their respec-

tive cumulative requirement. To this end, we still require the inverse of the task

assignment function from channels to paths, viz.

Aγ
−1(p) = {c ∈ C∣ Aγ(c) = p}

so that we can define the set of channels mapped to x (which may be a router, link

or interface) as

Cx = {c ∣ p ∈ L⋆ , x ∈ p, c ∈ Aγ
−1(p)}

and finally cumulative requirement Sγ(x) imposed on x by execution layout L as

Sγ(x) = ∑
c∈Cx

RC(c)

With this notion of cumulative requirement, execution layouts can be checked

against the capacity vectors of a platform, to see whether no capacities are exceeded.

thesis April 1, 2010 14:45 Page 39 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

39

C
h
a
p
t
e
r
3
–
O
n
-l
in
e
spa

t
ia
l
r
e
so
u
r
c
e
m
a
n
a
g
e
m
e
n
t

An execution layout L = ⟨A, I⟩ of application A = ⟨T ,C⟩ to the pathed platform

P⋆ = ⟨E , L⋆⟩ is called adherent if the following constraints are fulfilled:

L is adequate

∀e ∶ E (Sπ(e) ≤ CE(e))
∀r ∶ R (Sγ(r) ≤ CR(r))
∀l ∶ L (Sγ(l) ≤ CL(l))
∀ f ∶ F (Sγ(f) ≤ CF(f))

3.2.3 minimum capacities

Very few real-world examples exist in which all resources of, for example, a HwE

can be simultaneously assigned. In terms of the above, the cumulative requirement

imposed on aHwE is hardly ever precisely equal to its capacity. This means that even

though a HwE, router, interface or link might still have some remaining capacity,

but still be unavailable in any practical scenario. To eliminate these resources from

consideration, we introduce a threshold on the capacities, by means of aminimum
capacity vector Cmin of any resource. What this means is that when the capacity of a

resource is depleted below the minimum capacity vector, it is considered generally

unavailable. As an example, when HwE e has some resource (e.g. memory) that

is completely assigned to running tasks, it holds that CE(e) − Sπ(e) < Cmin
E (e), in

which case it is considered unavailable.

3.3 Constraints and cost

Many applications must deliver at least a specified QoS. The requirements with

regards to QoS are expressed in terms of maximum latency and minimum through-

put constraints. A constraint is expressed as a relation between two tasks, t1 and t2,
in the application’s task graph. For constraints to be (potentially) binding, a path

must exist in the task graph from t1 to t2.

QoS constraints of application A = ⟨T ,C⟩ are specified in two sets for latency and

throughput, respectively: Q l ,Qt ⊆ T × T ×R giving upper bounds on latency and

lower bounds on throughput, respectively, between pairs of tasks. An execution

layout is called feasible, if and only if it is adherent and all the application’s QoS

constraints aremet. How this can be proven is discussed inmore detail in section 4.4.

Adequacy, adherence and feasibility are all qualitativemetrics by which execution

layouts can be compared. The quantitative metric by which (feasible) execution

layouts can be compared is cost. To this end, let V be a function that assigns a cost

(i.e. valuation) to an execution layout. The cost of an execution layout is considered

to be the summed total of the cost of all its components, thus, for execution layout

thesis April 1, 2010 14:45 Page 40 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

40

3
.4
–
P
r
o
p
o
se
d
h
e
u
r
ist

ic
a
p
p
r
o
a
c
h

L = ⟨I,A⟩, the cost function V is:

V(L) = V(I) + V(Aπ) + V(Aγ)

where the cost of the individual components can be broken down further in the

cost of individual assignments, viz.:

V(I) = ∑
t
V(t, I(t))

V(Aπ) = ∑
t
V(t,Aπ(t))

V(Aγ) = ∑
c
V(c,Aγ(c))

The details of the cost function are left deliberately undefined. We will return to

the considerations for the cost model in chapter 4, where it will become apparent

that many considerations for cost modelling are platform dependent. This is also

the reason for the liberty taken with the syntax above. For the remainder of this

chapter, the existence of a cost function that meets the above criteria suffices.

3.4 Proposed heuristic approach

The previous sections of this chapter have defined a formal framework for on-line

spatial resource management. Since it is our goal to determine feasible execution

layouts on-line, fast methods are required. Exhaustive search for optimal execution
layouts is untenable. In this section, we demonstrate this by showing that finding

only a task assignment (given implementation selector I) for an execution layout in

a rather simple setting is already np-hard. Thus, heuristics are required to solve this

problem. To show how the proposed heuristic—discussed in detail and evaluated

in the following chapters—conforms to this formal framework, this section gives a

birds-eye view of it.

3.4.1 complexity as motivation

When we take into consideration only those homogeneous platforms that consist

of non-multi-tasking HwEs (i.e. all HwEs may be assigned at most one task and all

HwEs are of the same type), we find a relaxed Assignment Problem (ap) [67]. It is

relaxed in the sense that there may be more HwEs than tasks. In other words, the

mapping of tasks to a homogeneous platform of non-multi-tasking HwEs can be

thesis April 1, 2010 14:45 Page 41 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

41

C
h
a
p
t
e
r
3
–
O
n
-l
in
e
spa

t
ia
l
r
e
so
u
r
c
e
m
a
n
a
g
e
m
e
n
t

formulated as the linear program:

min ∑
t∈T
∑
e∈E

xteV(t, e)

s.t.

∑
t∈T

xte = 1 ∀e ∈ E

∑
e∈E

xte ≤ 1 ∀t ∈ T

where

xte
⎧⎪⎪⎨⎪⎪⎩

0 if e ≠ A(t)

1 if e = A(t)

This problem can be extended to multi-tasking HwEs, which introduces constraints

on the capacity, making it a Generalized Assignment Problem (gap) (specifically

mingap, because the objective is minimisation) [67]. The resulting integer linear

program is:

min ∑
t∈T
∑
e∈E

xteV(t, e)

s.t.

∑
t∈T

xte = 1 ∀e ∈ E

∑
t∈T

xteRI(I(t)) ≤ CE(e) ∀e ∈ E

where

xte
⎧⎪⎪⎨⎪⎪⎩

0 if e ≠ A(t)

1 if e = A(t)

The gap has been shown to be np-hard and even apx-hard to approximation [73].

Considering that C andR are not scalars, but vectors, this is a Vector Assignment

Problem (vap). The above clearly demonstrates the need for heuristic approximation,

especially if complete execution layouts are to be determined on-line.

3.4.2 hierarchical search

Considering the prohibitive complexity of exhaustive search, we propose an appli-

cation domain-aware heuristic: hierarchical search with iterative refinement. We

divide the search process in steps, starting with a very coarse grained perspective

in the first step and gradually adding more detail. At each step, decisions are made

that shrink the search space in the next step. Decisions made in previous steps are

considered fixed in later steps.

As is to be expected of heuristics, this abstraction carries with it the danger that

decisions made in early steps, using very high-level abstract information, lead to

search-spaces in later steps that contain no feasible solutions. Since this only comes

thesis April 1, 2010 14:45 Page 42 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

42

3
.4
.2
–
H
ie
r
a
r
c
h
ic
a
l
S
e
a
r
c
h

A & P

Binding

Mapping

Routing

Validation

L

chose I

chose Aπ

chose Aγ

feasible

inadequate

Error non-adherent

non-adherent

infeasible

time for improvement

Figure 3.5 – Hierarchical search with iterative refinement

to light in later steps, we propose a strategy for iterative refinement. Figure 3.5

shows the hierarchical decomposition into steps used in our on-line spatial resource

management algorithm for heterogeneous MPSoCs. We now describe each of these

steps in more detail.

Binding

The goal of the first step is to choose an implementation (and thereby HwE type)

for every task, i.e. to choose I in L = ⟨A, I⟩. By choosing I prior to Aπ , this step

implies a contract for Aπ , i.e. adequacy limits the choice of Aπ(t) to HwEs of type

τ, where I(t) ∈ Iτ .
To prevent running into non-adherence directly after this step, we only consider

those implementations for which an adhering mapping exists, i.e. that fit on at least

one HwE in the platform. Thus, we only allow I(t) = i when there is at least one

HwE e of type τ, where i ∈ Iτ and all components of C(e) −R(i) are ≥ 0.
The order in which we pick an implementation for each task is based on its desir-
ability. We define the desirability of a task as the difference between the cheapest

assignment and the second cheapest assignment of one of its implementations to

an HwE. In other words, if the second best implementation is more expensive, the

desirability to map the task increases.

thesis April 1, 2010 14:45 Page 43 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

43

C
h
a
p
t
e
r
3
–
O
n
-l
in
e
spa

t
ia
l
r
e
so
u
r
c
e
m
a
n
a
g
e
m
e
n
t

To sustain the adherence of L, we virtually map the chosen implementation to

the best-fitting HwE, which is determined in the desirability calculation. The

implementation choice for the remaining tasks is affected by this mapping, as the

available resource capacities in the platform are reduced. This guarantees that after

this step (if this step manages to map all tasks), at least one Aπ exists such that L
is adherent, although L might still be non-adherent due to the communication

restrictions (i.e. no guarantees are given at this point with regards to the existence

of an adherence preserving Aγ).

The algorithm for this step is based for a large part onMartello andToth’s bin packing

heuristic [67, mthg, pp. 206–207], with the exception that the desirability can be

amended. We award penalties and bonuses to the desirability of some task(s) to

prioritize their binding. Similarly, we can amend the cost of specific bindings. These

amendments are the input of the feedback loop; two vectors (one for desirability

and one for cost) with a component for every task in the application. We will return

to the subject of feedback below.

Mapping

Resulting from step one, we have an implementation selector I that assigns an

implementation to every task in the application and we know that an assignment

function Aπ exists, such that L = ⟨I,A⟩ is adequate. In this step, we take more

detail into account, aiming at finding a task assignment Aπ with minimal cost.

Besides cost factors based solely on the mapping of a task to an HwE, we also award

assignments with a bonus for proximity of neighboured tasks in the application’s

task graph. This stimulates locality, causing the communication routes, assigned in

the next step, to likely be short.

We define as starting point for the task assignment in the application’s task graph,

the task with the lowest communication degree. For this start task3 t, we evaluate
the costs of all possible assignments Aπ(t) to HwEs in the platform matching the

type of the implementation the task was mapped to in the previous step. After

assigning this task to the HwE with the lowest cost, we proceed with an iterative

mapping process. At each iteration i, the tasks that lie in the task graph iso-distance

i away from the start task are mapped. Using breadth first search starting from the

HwEs to which the tasks from the previous iteration were mapped, we map each

task to the best available HwE of the required type.

The search for HwEs can be stopped upon finding the first suitable set of HwEs (i.e.

breadth-first, first-fit), but the search may be allowed to continue for a few more

steps through the platform. How much further the search is allowed to continue is

an input parameter of the algorithm. This is discussed in more detail in chapter 4.

3When multiple tasks have the same (lowest) communication degree, we can start with an initial
set of tasks, or we can arbitrarily chose one from this set.

thesis April 1, 2010 14:45 Page 44 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

44

3
.4
.2
–
H
ie
r
a
r
c
h
ic
a
l
S
e
a
r
c
h

Again, we prevent immediate non-adherence in the next step, by only considering

HwEs for a task that have sufficient communication resources to facilitate the task’s

communication requirements, at least, locally.

Routing

For the realization of step three, the channels are sorted by non-increasing through-

put. Then, iteratively for each channel, a corresponding path is determined, taking

into account the loads resulting from the previously mapped channels.

The sorting is done to increase the probability that a heavy demanding channel gets

assigned a better path. In each iteration, for a given channel a shortest path between

the source and destination interface of the channel is determined, where only those

routers are taken into account which still have enough capacity for the throughput

requirement of the current channel. Thus, an Aγ is constructed iteratively, never

overpacking communication capacities of a router.

In general, UniformCost Search (ucs)—esp. Dijkstra’s algorithm—can be employed

to find routes. For specific interconnection topologies, specialized algorithms can

be employed. For example, in the case of regular mesh and torus NoCs, A⋆ does
not suffer from its infamous unbounded memory behaviour, in the worst case it

explores the same (amount of) nodes Dijkstra’s algorithm does, and in the average

case it outperforms Dijkstra’s algorithm [81].

Adding Aγ to the Aπ and I from the first two steps, the result of this step is an

adherent spatial mapping L = ⟨A, I⟩ where A = ⟨Aπ ,Aγ⟩.

Validation

The last step checks the throughput constraints posed on the application using

techniques developed by Stuijk et al [33] and Hansson et al [44]. These techniques

have been adapted to also allow latency constraints. For a detailed discussion of

these adaptations, see section 4.4.

If it is detected that a constraint is violated, execution layout L is infeasible and
feedback should be given to higher steps to try to improve those characteristics of

the mapping that violate the constraint(s). The constraint analysis performed in

this step provides us with information with regards to throughput bottlenecks (by

identifying critical cycles [53]).

If no constraint is violated, the constructed execution layout L is feasible. In this

case, possible points of improvement should be identified and fed back into the

corresponding step.

thesis April 1, 2010 14:45 Page 45 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

45

C
h
a
p
t
e
r
3
–
O
n
-l
in
e
spa

t
ia
l
r
e
so
u
r
c
e
m
a
n
a
g
e
m
e
n
t

Feedback

Tasks and channels on critical cycles detected during the validation process are

prioritized, by increasing their desirability (for the binding step), or by fixing them

to their fastest implementation. In general, a feedback immediately triggers a

new iteration, to prevent that multiple changes influence the mapping process. In

other words, if any step fails to find a satisfactory result, it immediately generates

feedback so that ‘higher’ steps may generate a more suitable result. It is important to

realize that this proposed iterative hierarchical approach differs significantly from

simple local search methods and global-local search methods that are often used

in heuristics. The feedback from a lower level may result in a completely different

mapping on a higher level in a next iteration.

3.5 Conclusion

In this chapter, we gave formal definitions of the hardware components (HwEs,

routers, links and interfaces), that together form a platform, and of the software com-

ponents (tasks, implementations and channels), that together form an application.

We have given definitions for resource capacities and resource requirements, that

are each other’s dual, such that they can be compared to see whether the resource

requirements of a software component are met by the resource capacities of a hard-

ware component. Furthermore, we have provided ways to composite, accumulate

and threshold both capacities and requirements. Finally, we have defined QoS

constraints on applications.

With these definitions, we have given definitions for what constitutes on-line re-

source management, i.e. finding an assignment of applications to platforms that

meet the application’s QoS constraints. Such assignments, called execution lay-

outs, have been given qualitative metrics (adherence, adequacy and feasibility) and

quantitative metrics (cost), so that they can be compared.

We have given an outline of a heuristic, thatmay be used to perform on-line resource

management and shown how it relates to the qualitative metrics. The next chapters

describe the heuristic and our implementation thereof in greater detail, relate it to

the quantitative metrics and evaluate (by benchmark and case study) the heuristic.

thesis April 1, 2010 14:45 Page 46 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

thesis April 1, 2010 14:45 Page 47 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Ch
ap

te
r4

Kairos: an osrm implementation

Abstract – The heuristic introduced in section 3.4 is implemented using al-
gorithms described in more detail in this chapter. Algorithms for all levels of
the hierarchical search are described, as well as the concrete implementation
in a Linux kernel.

4.1 Binding

As discussed in chapter 3, the binding phase can be seen as an assignment problem.

For every task, an appropriate implementation is selected. To avoid implementa-

tion selectors that make execution layouts inadherent (see chapter 3), besides the

implementation selector, we construct a task mapping Aπ that does not take into
account topological information from the platform (i.e. it can assign tasks to HwEs

anywhere on the platform). This mapping is only constructed to guarantee that one

exists. In the following steps this mapping is no longer used.

4.1.1 the Bind algorithm

The Bind algorithm (see algorithm 1) constructs implementation selector I. It is
based on approximation algorithm mthg, for the gap by Martello and Toth [67, pp.

Parts and earlier revisions of this chapter have been published in [PhH:8].

thesis April 1, 2010 14:45 Page 48 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

48

4
.1.1

–
T
h
e

B
ind

a
l
g
o
r
it
h
m

Algorithm 1: Bind algorithm

input : Task set T , implementation set I, HwE set E
result : An impl. selector I for all tasks, such that a mapping Aπ exists

η ← ⟨�, �, �,∞,∞⟩ ⪧ field names: ⟨t, i , e ,V ,V ′⟩;1

T ′ ← T ;2

Aπ ← ∅;3

I ← ∅;4

while T ′ ≠ ∅5

B ← η;6

forall t ∈ T ′7

C ← η;8

forall {⟨i , e⟩ ∣ i ∈ I(t), e ∈ E ,Avail⟨I,Aπ⟩(e , i)}9

V ← BindC(i , e);10

if V < CV then C ← ⟨t, i , e ,V ,CV ⟩;11

else CV ′ ← min(CV ′ ,V);12

if C = η then fail ;13

if CV ′ − CV > BV ′ − BV then B ← C14

Aπ ← Aπ ∪ {⟨Bt , Be⟩};15

I ← I ∪ {⟨Bt , B i⟩};16

T ′ ← T ′ ∖ { Bt };17

206–207]. The idea is that, one-by-one, an assignment is chosen for every task. Every

possible assignment is associated with a cost. Since we are trying to find a minimal-

cost assignment, the (locally) ‘best’ assignment for a task is that assignment with the

lowest resulting cost. The order in which the tasks are assigned to implementations

depends on their desirability. As in mthg, we define the desirability of a task as the

difference in cost between its best and its second-best assignment. Because every

assignment of a task to an implementation can invalidate at most one assignment

alternative for any other task1, defining the desirability this way prioritizes task

assignments based on highest increase in cost when alternatives are eliminated. The

difference between mthg and Bind lies in the choice of knapsacks, viz. a knapsack

in Bind is a combination of an implementation with an HwE, as opposed to an

implementation only, which is the case in mthg.

In the bind algorithm (see algorithm 1), choices made are stored in records, referred

to as binding choice records. The fields therein, as shown in the comment on

line 1, are the task t being bound to implementation i on HwE e with cost V and

the cost of the best alternative V ′. The initialization (lines 1–4) defines the ‘nil’

value for a binding choice record η, the iteration task set T ′ and the resulting

implementation selector I and task mapping Aπ . Binding choice records store the

1This assumes at most one implementation per HwE type, which is not a restriction per se, but in
practice not much can be gained by making multiple implemenations for any HwE type.

thesis April 1, 2010 14:45 Page 49 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

49

C
h
a
p
t
e
r
4
–
K
a
ir
o
s:
a
n
o
sr
m
im

p
l
e
m
e
n
t
a
t
io
n

task, implementation and HwE of a preferred assignment (resp. t, i and e), together
with the cost associated with that assignment V and the cost of the second-best

alternative V ′. On every iteration of the main loop (lines 5–17), the best assignment

B for the most desirable t ∈ T ′ is added to the result (lines 15–16). When an

assignment is chosen for a task, that task is not considered again (line 17).

The choice of the best assignment is made by considering all remaining unassigned

tasks (lines 7–14). For each task, a candidate assignment C is sought, that assigns

task t ∈ T ′ to HwE e ∈ E by selecting implementation i ∈ I(t). C must still be

available. Availability means the types of i and e are the same and e has sufficient

resource capacity to meet i’s requirements (Avail on line 9, discussed below). If

there is any task for which no candidate assignments are found (line 13), Bind fails

to find an implementation selector for an adherent execution layout. When the

best candidate and the cost of the second-best candidate for a task are found, the

desirability (the cost difference between the best and second best assignment) is

computed and compared to that of the best solution found so far. If the candidate

has a higher desirability, it replaces the former best alternative (line 14).

The inner loop (lines 9–12) first determines the cost of assigning implementation

i to HwE e (BindC on line 10). Next, the last candidate is compared with that of

the assignment under consideration and, if it improves the solution, replaces the

candidate. When the current assignment does not improve the solution, its cost is

still tested to see whether it improves the second-best alternative.

The cost function BindC must, of course, be ‘simple’. We use simple profiling data

that measures, per implementation, the energy consumption2 for specific types of

HwEs, i.e. a straightforward lookup. However, when managing HwEs that have

large capacities (with regards to the requirements of tasks) and where multi-tasking

is very common, a typical added component in this cost function could take into

account the remaining capacities of the HwE, so as to achieve cross-HwE-type load

balancing. In the complexity analysis of Bind (see section 4.1.2), we assume constant

complexity for the cost function.

The availability (Avail) of a binding of task t with implementation i ∈ I(t) depends
on the existence of an HwE e ∈ E that is of the correct type, i.e. τ(t) = τ(e), and
with sufficient capacities, i.e. Ce −Ri ≥ 0. Since the implementation selector is con-

structed incrementally in Bind, earlier bindings were tested already for availability.

Newly selected bindings may not make these older bindings unavailable. Therefore,

when an HwE is used to show that a binding is available, the task in the binding

is also mapped to this HwE (line 15). The mapping of all previously bound tasks

is assumed to be fixed when determining the availability of new bindings. This is

indicated in the algorithm by subscripting the implementation selector and task

assignment function (line 9).

2The average energy consumption when measured using representative input data.

thesis April 1, 2010 14:45 Page 50 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

50

4
.1.2

–
C
o
m
p
l
e
x
it
y
o
f

B
ind

4.1.2 complexity of Bind

Because every iteration of the outer loop reduces T ′ by one element, the loop within

it (lines 7–14) decreases in length. More precisely, the outer two loops combined

have 1
2 ∣T ∣(∣T ∣ + 1) iterations. The set of binding candidates (line 9) has a worst case

size of ∣I × E∣. When the complexity of Avail is constant, the worst case time to

compute this set is proportional to its size. Thus, the Bind algorithm as discussed

has a worst case time complexity ofO(T2IE).

This complexity can be reduced by observing that every binding choice invalidates

at most one binding candidate for any other (unbound) task. When a binding

candidate is invalidated, the corresponding task may have lost its best alternative

(in which case this should be recalculated), its second best alternative (in which

case the task’s desirability changes), or an alternative that changes neither the best

alternative, nor the desirability. This means the average case time complexity of

Bind can be greatly improved by having an ordered representation of T ′ that is
only rearranged for tasks that lose their best or second best candidate. Also, since

the HwEs in a platform are static, the set of implementation-HwE combinations

can be preprocessed, e.g. when an application is installed on a platform. This

eliminates type mismatched combinations. Such a preprocessed set of assignable

implementations, denoted by I⋆, contains members with constrained capacities,

but no type constraints. If an added memory size ofO(TI⋆) is acceptable, for every
task, the order of all candidates can be stored after being calculated once. This

calculation takesO(TI⋆ log I⋆) time [67, pp. 207–208]. The order of alternatives

per task is never influenced by Bind, so maintaining order becomes very simple.

This reduces the worst case time complexity of Bind toO(T2 + TI⋆ log I⋆).

4.2 Mapping

Given an implementation selector I, the assignment of tasks to HwEs is still a

complex problem. Most single-chip production platforms to date are relatively

small. With increasing integration and new, more scalable architectural building

blocks (NoC, etc.), inter-HwE distance begins to get an essential influence in

mappings of tasks to HwEs. Having to take into account the distance between the

HwEs to which two communicating tasks are assigned only raises the complexity.

The heuristic we propose for the mapping phase takes these observations into

account. First, it partitions the set of tasks into classes. Next, it iterates over these

classes, mapping every task in a class to an HwE. Tasks are in the same class if they

are in the same order neighbourhood of a given starting point. By iterating over the

classes in increasing distance from the starting point, and by mapping tasks from a

class close to those from the previous class, locality is promoted. The remainder of

this section describes this heuristic in more detail.

thesis April 1, 2010 14:45 Page 51 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

51

C
h
a
p
t
e
r
4
–
K
a
ir
o
s:
a
n
o
sr
m
im

p
l
e
m
e
n
t
a
t
io
n

4.2.1 problem partitioning: the Map algorithm

We apply a divide-and-conquer [63] approach to partition the mapping problem

into variable-sized sub-problems. The idea is as follows: An application A = ⟨T ,C⟩
is iteratively partitioned into subsets. On iteration i, all tasks in subset Ti ⊆ T are

mapped onto a subset of the HwEs E i ⊆ E. Next, the subset Ti+1 is constructed by

finding all unmapped tasks that communicate with tasks in the current iteration’s

subset Ti . The following describes this process in more detail, after introducing a

few concepts and their notation.

Degree, neighbourhood and cumulative sets

The degree of a vertex v, denoted by d(v), in graph G (viz. task t in application A,
or HwE e in pathed platform P⋆) is defined as the number of edges incident to

v in G (regardless of their direction). When direction is relevant, we denote the
out-degree—the number of edges from v—as d+(v) and the in-degree—the number

of channels to v—as d−(v), i.e. d(v) = d+(v) + d−(v). Furthermore, we define the

maximum degree ∆(G) and theminimum degree δ(G) as the largest, resp. smallest

degree of vertices in G.

The neighbourhood of a vertex v in graph G = ⟨V , E⟩, denoted by N(v), is the set
of vertices directly connected to v in graph G, disregarding edge direction, viz.

N(v) = {v′ ∈ V ∣ v ≠ v′ , ⟨v , v′⟩ ∈ E ∨ ⟨v′ , v⟩ ∈ E}

This is also referred to as the first-order neighbourhood. The ith-order neighbour-
hood of v in the underlying undirected graph G̃ of G, denoted by N i(v), is the set
of vertices in G̃ for which the shortest path from v has length i, where the length of

a path is the number of edges on it. Analogously to degrees, neighbourhoods can

be expressed with direction as N+i (v) for the out-neighbourhood—those vertices to

which the shortest path from v has length i—and as N−i (v) for the in-neighbour-
hood.

For the sake of a simple notation, we introduce a shorthand for cumulative sets, to
indicate the union of all sets with smaller-or-equal index, i.e.

N⋆i (v) =
i
⋃
j=0

N j(v)

Here N⋆0 (v) = {v}. In the case of neighbourhoods, this indicates all vertices that

have a shortest path of length at most i. However, we use the ⋆ as a general notation
for cumulative sets, so for the classes of the partitioned task set, T⋆i indicates all tasks

mapped in iterations up-to-and-including i. As a further notational simplification,

we say that when a function that is defined on elements of a set is applied to a set, it

is applied to all elements, viz.

N(V) =⋃{N(v)∣v ∈ V}

thesis April 1, 2010 14:45 Page 52 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

52

4
.2
.1
–
P
r
o
b
l
e
m
pa
r
t
it
io
n
in
g
:
T
h
e

M
a
p
a
l
g
o
r
it
h
m

Starting point

In many cases, especially in embedded systems, the mapping of some tasks of the

application is fixed. Most commonly, this is because input and output have to come

from predetermined HwEs of the platform (because that HwE is an input or output

of the platform from or to the outside world, e.g. an a/d-converter). Formally, we

say that the mapping of a task t is fixed after the binding phase, if there is precisely

one HwE e on the platform capable of executing the implementation selected for

t, i.e. given an implementation selector I, the mapping A(t) is considered fixed

when ∃! e ∈ E [τ(e) = τ(I(t))]. Because capacities are not taken into account for

this criterion, a fixed mapping imposes only a (constant time) lookup for that task.

For the mapping algorithm, the initial subset of tasks T0 is defined as the set of

all tasks that have a fixed mapping after the binding phase. For these tasks, the

corresponding initial set of HwEs E0 is already specified, so no further initialization

is required. If no fixed tasks exist, we choose T0 to be a singleton set consisting of a

randomly chosen task from the subset of tasks with the lowest degree, i.e. any task

t ∈ T such that d(t) = δ(T). Having a low degree in the task graph makes a task a

‘safe’ starting point, because if it is mapped onto an HwE surrounded by unavailable

HwEs, the chances that all required links may still be routed are higher than for

those of a task with a high degree (because there are less links to route). For the

chosen task t to form the initial class, i.e. T0 = {t}, an HwE has to be found to form

the singleton set E0 = {e}, such that t is assigned to e. We find it by minimizing the

differences between the capacities in the neighbourhood of e and the requirements

in the neighbourhood of t in order to find the tightest fit, i.e. we chose e by

min
e∈E

RRRRRRRRRRRR
∑

e′∈N(e)
CE(e′) − ∑

t′∈N(t)
RI (I(t′))

RRRRRRRRRRRR

By initializing the algorithms in this way, the external fragmentation of HwEs is

reduced, which increases the probability that an allocation for applications that

are started after the current application exists. External fragmentation is defined

formally as the fraction of pairs of adjacentHwEs, forwhich one is available for a task

and the other is not. Since the aim of the minimisation of external fragmentation is

to contribute to the probability that other applications can be started on the same

platform, the definition of external fragmentation fext should not depend on the

task set of the application currently under consideration. Therefore, we use the

minimum capacity vectors (see section 3.2.3) as a threshold for availability, viz.

α = ∣{⟨e , e′⟩ ∣ e ∈ E , e′ ∈ N(e), CE(e) ≥ Cmin
τ(e) , CE(e′) < Cmin

τ(e′)}∣

θ = 1

2
∑
e∈E
∣N(e)∣

fext =
α
θ

thesis April 1, 2010 14:45 Page 53 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

53

C
h
a
p
t
e
r
4
–
K
a
ir
o
s:
a
n
o
sr
m
im

p
l
e
m
e
n
t
a
t
io
n

A

Ti−1

Ti

Ti+1

P

E i

E i−1

Aπ 0

Aπ i−1

Aπ i

Figure 4.1 – Incremental mapping approach

This concretemeasure of external fragmentation is not only used in the initialization,

but also in the cost function for every assignment, as demonstrated below.

Consecutive iterations

Having initialized the algorithm with an initial assignment Aπ0 ∶ T0 → E0, con-

secutive iterations must find assignments for the partitions of the task set, until

the entire task set is mapped onto HwEs. The tasks are partitioned iteratively, i.e.

starting with the above constructed T0 for any Ti−1, we construct the next partition

Ti . To promote locality of communication, the unmapped tasks that communicate

with a mapped task should be mapped as close as possible to the HwEs the tasks

of Ti−1 are mapped to. This is why, given a mapping for Ti−1, the next partition Ti
is chosen as the set of tasks with which the tasks in Ti−1 communicate. Intuitively,

this suggests that Ti = N(Ti−1), albeit that this definition includes tasks on a cycle

in the task graph, or tasks reachable by paths of different lengths from other tasks,

in multiple classes. Instead, the partitions can directly be defined in terms of the

initial partition, as Ti = N i(T0). This approach is illustrated in figure 4.1.

Since the complexity of finding a mapping for a single class Ti still grows rapidly in

the size of the HwE set, E is also partitioned into classes. The class E i is created by

searching for HwEs available for tasks in Ti , until Ti is covered, i.e. for every task

t ∈ Ti there is an available HwE e ∈ E i . To stop searching immediately after finding

a covering set of HwEs only allows for cost minimization. Other objectives, like

minimazation of external fragmentation, may require more room for choice in the

mapping from Ti to E i . To this end, E i is expanded a little after a covering set is

found for Ti .

The search for a covering set of HwEs is also realized as an iterative process, in

thesis April 1, 2010 14:45 Page 54 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

54

4
.2
.1
–
P
r
o
b
l
e
m
pa
r
t
it
io
n
in
g
:
T
h
e

M
a
p
a
l
g
o
r
it
h
m

E i ,0

E i ,1

E i ,2

E i SGAP

SGAP

SGAP

Figure 4.2 – Incremental search for HwEs

which, as before, locality is increased by taking into account the HwEs close to

HwEs to which the tasks in Ti−1 are mapped. In other words, the search starts

from ran (Aπ i−1), where ran(f) denotes the range of function f . During iteration
j, HwEs in the jth-order neighbourhood of this starting point, denoted by E i , j are

considered for addition into E i . The direction of the communication between tasks

in Ti−1 and tasks in Ti is taken into account by using the directed neighbourhood.

Searching terminates a predefined number of iterations after a partition E i has been

found that covers Ti . In other words, if the set (E i)⋆n constructed in iteration n
covers Ti and the predefined number of added iterations is k, then E i = (E i)⋆n+k .
To determine whether an HwE set (E i)⋆j covers task set Ti , an assignment is sought

from tasks to HwEs. This is a reduced version of the original gap to assign all tasks

in T to E. It is solved by an approximation algorithm SGAP, discussed in more

detail below. When SGAP fails to find a mapping from all tasks in Ti to HwEs in

(E i)⋆j , the latter is assumed to not cover the former and the search continues and

constructs E i , j+1. On the other hand, when SGAP succeeds, searching continues

for the aforementioned predefined number of iterations. Applying SGAP to this set

results in Aπ i ∶ Ti → E i . This process is illustrated in figure 4.2.

Algorithm

The Map algorithm (see algorithm 2) constructs a task assignment Aπ . Above, the

initialisation is described in terms of initial task and HwE sets. In lines 1–2, however,

the initial task assignment (Aπ0) is constructed as a whole. Its domain is the initial

task set and its range is the initial HwE set, i.e.

dom (Aπ0) = T0

ran (Aπ0) = E0

The outer loop of the algorithm (lines 3–10) iteratively maps the partitions (line 4)

of the task set, until all tasks have been mapped. The partition of the HwE set

thesis April 1, 2010 14:45 Page 55 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

55

C
h
a
p
t
e
r
4
–
K
a
ir
o
s:
a
n
o
sr
m
im

p
l
e
m
e
n
t
a
t
io
n

Algorithm 2: Map algorithm

input : An application A = ⟨T ,C⟩, impl. selector I, platform P = ⟨E , L⟩
result : A task assignment Aπ for all tasks in T
Aπ0 ← {⟨t, e⟩ ∈ T × E ∣ {e} = {e′ ∣ e′ ∈ E , τ(e′) = τ(I(t))}};1

if Aπ0 = ∅ then Aπ0 ← {⟨t, e⟩ ∈ T × E ∣ d(t) = δ(T),Avail(e , I(t))};2

with i ∈ N loop3

Ti ← N i (dom (Aπ0));4

with j ∈ N loop5

E i , j ← ⋃ϕ N
ϕ
j (ran (Aπ i−1 ↾ Nϕ (Ti)));6

if E i , j = ∅ then fail ;7

Aπ i , j ← SGAP (Ti , (E i)⋆j);8

until Ti = dom (Aπ i , j−k) then Aπ i ← Aπ i , j9

until T⋆i = T then return Aπ
⋆
i10

N+
(ran (Aπ i−1 ↾ N−

(Ti)))

ran (Aπ i−1)
E i−1

Ti

N−
(Ti)

Ti−1

Aπ i−1 ↾ N−
(Ti)

Figure 4.3 – Search iteration for E i , j

E i is constructed by iterative searching (lines 5–9) until k iterations after the first
covering set was found (hence Aπ i , j−k on line 9). The search starts with the HwEs

to which the tasks from the previous partition are mapped (ran(Aπ i−1)), taking
into account the direction of inter-task communication.

An example is illustrated in figure 4.3. Tasks in Ti receive communication from tasks

inN−(Ti), some of which are—in this example—part of Ti−1, i.e. have beenmapped

in the previous iteration. When restricting the task assignment function Aπ i−1 to

N−(Ti) and taking its range, we find the HwEs to which tasks are mapped that send

communication to the tasks we want to currently map. The out-neighbourhood of

these HwEs are good candidates to map tasks from Ti to. Similarly, for HwEs to

which tasks from N+(Ti) are mapped, the in-neighbourhood are good candidates

thesis April 1, 2010 14:45 Page 56 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

56

4
.2
.1
–
P
r
o
b
l
e
m
pa
r
t
it
io
n
in
g
:
T
h
e

M
a
p
a
l
g
o
r
it
h
m

for those tasks in Ti that send communication to tasks in Ti−1. Since the first-order

neighbourhood may not contain sufficient HwEs to map Ti to, E i , j is the union of

the jth-order directed neighbourhoods, as described above. In the algorithm, the

union of both directions has been abbreviated to ϕ, to mean either + or −, and to

its compliment ϕ, to mean either − or +, respectively.
When no further candidate HwEs are found, the algorithm fails (line 7). A con-

cession has been made here to notational brevity: In actual implementations, if a

covering set was found in a previous iteration (i.e. the current iteration is one of

the k extra iterations), the mapping constructed for that covering set is assigned to

Aπ i . A mapping is sought on the cumulative set (E i)⋆j , since the subsets E i , j are

the steps by which E i is iteratively extended.

Algorithm 3: SGAP algorithm

input : Partition of the task set Ti and candidate partition of the HwE set

(E i)⋆j
result : A (possibly partial) mapping Aπ i , j ∶ Ti → (E i)⋆j
Aπ i , j ← ∅;1

c1 ←Ð→∞;2

for e ∈ (E i)⋆j3

for t ∈ Ti (c2(t)← MapC(t, e));4

repeat5

B ← ⟨�, 0⟩ ⪧ field names: ⟨t,V⟩;6

for C ∈ {⟨t′ , c1(t′) − c2(t′)⟩ ∣ t′ ∈ Ti ,Avail(e , I(t′))}7

if CV > BV then B ← C8

if Bt ≠ � then9

c1(Bt)← c2(t);10

Aπ i , j(Bt)← e;11

until Bt = � ;12

The SGAP algorithm (see algorithm 3) is an adaptation from [20]. For every HwE

in (E i)⋆j , it tries to find an optimal packing of tasks from Ti . When a task occurs in

the optimal packing of two HwEs, it is moved to the HwE that imposes the lowest

cost. This is accomplished by keeping track of the best-case cost for every individual

task (c1) and per combination of HwE and task, the cost of mapping the task to the

HwE (c2).

The outer loop of the algorithm (lines 3–12) traverses the HwEs in (E i)⋆j . First, the
cost of mapping any task from Ti to the current HwE is calculated and stored in

c2 (line 4). Next, the inner loop (lines 5–12) iteratively choses the best task to map

onto this HwE (lines 7–8) and if a task is found, i.e. if a task exists that still fits this

HwE, the cost of this mapping is stored as the best for the task and the mapping is

recorded (lines 9–11). The cost for this mapping is indeed an improvement on any

thesis April 1, 2010 14:45 Page 57 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

57

C
h
a
p
t
e
r
4
–
K
a
ir
o
s:
a
n
o
sr
m
im

p
l
e
m
e
n
t
a
t
io
n

mapping of this task found earlier, because the measure of profit by which the best

task tomap is the improvement of the best-case cost found until now (c1(t′)−c2(t′)
on line 7).

As explained above and illustrated in figure 4.2, every set (E i)⋆j is a strict superset
of (E i)⋆j−1. Thus, when SGAP fails to find a complete mapping for the tasks in Ti
during iteration j − 1, it is invoked again with a larger set of HwEs. Since the task

set Ti is unchanged between these iterations, instead of starting with an empty

initialization (as is the case in lines 1–2), SGAP can be initialised with the results

from the previous invocation.

Algorithm 4: MapC algorithm

input :

result :

if Avail (e , I(t)) then1

m1 ← ∣N(e) ∩Aπ
⋆
i (N(t))∣;2

m2 ← ∣N(e) ∩Aπ
⋆
i (T)∣;3

m3 ← ∣{e′ ∈ N(e) ∣ Active(e′)}∣;4

f ← 3 ∣N(e)∣ −∑3
i=1 m i ;5

c ← ∑{D(e , e′) ∣ e′ ∈ Aπ
⋆
i (N(t))} +U ∣N(t) ∖ dom (Aπ

⋆
i)∣;6

return f Wfrag + cWcomm;7

else return∞;8

Finally, the MapC() algorithm (see algorithm 4) expresses the cost model used.

When HwE e is unavailable for the execution of a task, the cost of assigning that

task to theHwE is infinite (line 8). Otherwise, if theHwE is available for the task, the
cost of the assignment consists of two components (line 7): one for fragmentation

and one for communication (whereWfrag andWcomm are the weights assigned to

them, respectively, as part of the configuration of the resource manager).

The penalty for fragmentation f is given to those mappings that increase fragmen-

tation. This means that this penalty is highest when a task is mapped to an HwE

whose neighbours are all inactive. The penalty costs are decreased (by one) for

each neighbouring HwE e for which one of the following three conditions holds:

When a neighbour task of t is assigned to a neighbour HwE of e (m1), when any

task from the same application is mapped to a neighbour HwE of e (m2) and when

a neighbour HwE of e is already assigned any task from any application (m3), i.e.

when it is active. These criteria are overlapped, i.e. when a task communicating with

t is mapped to e′ ∈ N(e), all three criteria hold. Because the best case should not

impose a penalty at all, the worst-case penalty is set to 3∣N(e)∣ and the best-case

may be 0.

The communication component is the sum of distances between the HwEs to which

the tasks in the neighbourhood of t are mapped and HwE e. However, since E i is

iteratively explored, not all inter-HwE distances may have been found yet: E i , j is an

thesis April 1, 2010 14:45 Page 58 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

58

4
.2
.2
–
C
o
m
p
l
e
x
it
y
o
f

M
a
p

extention from E i , j−1 with HwEs from N(E i , j−1), it may contain an HwE ė that is in
N j(e) and in Nn(e′), where n > j, for some e , e′ ∈ E0. This means that on iteration

j, a route from e to (or from, depending on the direction of the neighbourhoods)

ė has been found already, but a route from e′ to ė has not. Searching for that

(yet) unknown route requires running a routing algorithm. To avoid the cost of

this added searching, we only look at distances of routes between HwEs that have

already been explored. During exploration, distances found are stored in a distance

matrix D. Any distance not previously found is set to a large constant U to indicate

the penalty for uncertainty. This means that the value of D(e , e′) on line 6 should

be read as

D(e , e′) = min
k≤ j
({k ∣ e ∈ Nk(e′)} ∪ {U})

The second term of the communication component states that for neighbouring

tasks that have not yet been mapped, we also give penalty U .

4.2.2 complexity of Map

In the worst-case scenario, all HwEs of a platform are considered. This happens, for

example, when a task t ∈ Ti−1 is mapped to an HwE e ∈ E i−1 and the first HwE e′
of the required type for t′ ∈ Ti , i.e. τ(e′) = τ(I(t′)), is in N j(e) where (E i)⋆j = E.
Thus, the complexity of Map includes a term ∣E∣.

Map iterates over the classes Ti of the partitioning of T (algorithm 2, lines 3–10).

In every iteration of SGAP, the best task to assign to the current HwE is selected

(algorithm 3, lines 7–8). By sorting all tasks in Ti by their cost improvement (c1(t)−
c2(t) on line 7), the best task can be found inO(logTi).

This leads to a total complexity ofO(E∑i Ti logTi) in which the term Ti can not

be bound any tighter than T . Thus, we derive for the execution time complexity of

Map:

O (E∑
i
(Ti logTi)) ≤ O (ET logT)

4.3 Routing

The realisation of the routing part is based on known routing algorithms. There-

fore, this section does not give a detailed explanation of algorithms. Instead, we

give a concise overview of the relevant considerations and choices available for

implementations, as well as the choices made for the implementation described in

section 4.5.

thesis April 1, 2010 14:45 Page 59 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

59

C
h
a
p
t
e
r
4
–
K
a
ir
o
s:
a
n
o
sr
m
im

p
l
e
m
e
n
t
a
t
io
n

4.3.1 considerations

Communication networks generally identify three classes of communication, i.e.

broadcast (one-to-all), multicast (one-to-many) and unicast (one-to-one). Broad-

cast is often used in systems where the operating system can perform ad-hoc man-

agement of one or all running processes. In real-time systems, however, this is

usually not employed, because it introduces hard to predict timing issues [16, pp.

15–18]. Multicast communication is useful for applications in which the same data

is sent to a number of different tasks, especially when that data is voluminous.

On-chip router architectures that support multicast routing are rare, because the

cost in terms of area is considerable. However, for applications such as the beam-

former described in chapter 5, they can considerably reduce redundant traffic and,

thereby, energy consumed in communication. As an alternative to multicast routers,

busses can facilitate multicast communication, although they offer considerably

less scalability and make a platform considerably more application specific [52].

Unicast communication is the most common in real-time streaming applications.

Each channel in an application is considered a point-to-point communication

channel, that requires a unicast route through the interconnect. When two commu-

nicating tasks from an application are mapped to different HwEs, a route needs to

be found from one HwE to the other. The cost function used to express the cost

of a route can be chosen to reward, for example, low energy consumption or low

network congestion [54]. Since the mapping of tasks already stimulates locality, we

use the path length (in terms of routers and links) as a measure for cost.

The optimal routing of all communication channels of an application requires

the simultanious consideration of all channels. The complexity of such a holistic

solution to the routing problem is prohibitively complex. We chose to route channels

one at a time (similar to [68]). Depending on what interconnection resources (e.g.

bandwidth) are most scarce, channels can be sorted in terms of their requirement

of the most scarce resources, descending. On platforms where the number of

connections is most scarce, as those in chapter 5, however, sorting only imposes

additional cost and renders no improvement of the final routing.

4.3.2 routing algorithms

The routing algorithm employed in the implementation of the on-line spatial re-

source manager (see section 4.5) is ucs. ucs is a modified version of Dijkstra’s

shortest path algorithm [29], which terminates as soon as the destination is reached.

This algorithm does not allow for non-positive cost links, thus there is a restriction

on any given bonusses for a link: A bonus (leading to a reduction of the cost) must

be strictly smaller than the cost3.

3Should such bonusses be deemed necessary, the Bellman-Ford algorithm [9] may be used.

thesis April 1, 2010 14:45 Page 60 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

60

4
.3
.3
–
M
u
lt
ic
a
st

r
o
u
t
in
g
b
y
r
e
n
d
e
z
v
o
u
s
p
o
in
t
s

p

c1

c2

p
c1

c2

p

c1

c2

p
c1

c2

Figure 4.4 – Shorter cummulative communications paths with multicast routing

Depending on the architecture of the platform’s interconnect, more specialized

routing algorithms can be used. As an example, consider that for highly regular

interconnect topologies, such as meshes and tori, A⋆ search [25] has the same

worst-case complexity as ucs, but a far better average-case performance. The most

commonly known weakness of A⋆, the exponential memory complexity, is not

a problem for topologies with a relatively low number of nodes (dozens to a few

hundred).

4.3.3 multicast routing by rendezvous points

As mentioned above, when one task produces identical input for multiple other

tasks, both interconnect resource requirements and energy consumption can be

reduced by having multicast routers. If such routers exist in the interconnect, the

on-line spatial resource manager needs some extra facilities to deal with this.

To this end, task graphs are extended to have ‘router tasks’ that have one incoming

and n > 1 outgoing channels and can be mapped to a multicast router. In the

mapping phase, these tasks are ignored, i.e. a router task is transparently perceived

as n independent channels. After the mapping phase, the same algorithm (Map)

is used to map the router tasks to multicast routers. If the resulting cummulative

path length is shortened by using a multicast router (figure 4.4), the router task is

accepted. When this is not the case, the router task is removed from the task graph

and rewritten to n channels.

4.4 Validation

As with routing, the realisation of the QoS validation part is based on known

routing algorithms. Therefore, this section does not give a detailed explanation of

algorithms. Instead, we discuss how task graphs are rewritten to sdf graphs, using

thesis April 1, 2010 14:45 Page 61 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

61

C
h
a
p
t
e
r
4
–
K
a
ir
o
s:
a
n
o
sr
m
im

p
l
e
m
e
n
t
a
t
io
n

s,5

d,9

f,2

2

9
7

6

1

34 6

name

actor

consumption rate

production rate

firing time

tokens

Figure 4.5 – Example sdf graph

information from the binding, mapping and routing stages, and which analysis

is performed on these sdf graphs to decide whether or not an execution layout

is feasible. We will, however, first give a brief introduction to sdf graphs and the

representations used.

4.4.1 synchronous data flow graphs

sdf graphs are directed graphs, consisting of vertices, referred to as ‘actors’, edges

and a few annotation functions. Actors are annotated with their name and their

firing time. Edges represent communication and arbitration dependencies between

actors. Edges are annotated with three values: The number of tokens they contain,
the production rate and the consumption rate. The production and consumption

rates are static parameters, i.e. they do not change over time. The number of tokens

contained on an edge can change, as described below.

A token is the atomic unit of data in sdf. Tokens are produced onto an edge at the

end of the firing of the producing actor (at the edge’s start). Tokens are consumed

from an edge at the beginning of the firing of the consuming actor (at the edge’s

end). How many tokens are produced and consumed per firing is indicated by the

production and consumption rates with which the edges are annotated.

An actor may fire when on every incoming edge there are at least as many tokens

as the edge’s consumption rate annotation. When an actor fires, it consumes the

number of tokens given by the consumption rate on its incoming edges, and after

the actor’s firing time, it produces the number of tokens given by the production rate

on its outgoing edges. Consumption and production of tokens occurs in zero-time.

Consecutive, firings of an actor may overlap, i.e. a new firing may start as soon as

all incoming edges contain sufficient tokens, regardless of when previous firings

started. A common technique to model tasks that do not run multiple parallel

instances is to add a self-edge, i.e. an edge that begins and ends at the same actor,

with one initial token on it, a production rate of one and a consumption rate of one.

For tasks that allow n parallel instances of itself, a self-edge with production and

consumption rates of one is added with n initial tokens.

We use a graphical notation for sdf graphs, such as the example in figure 4.5. In this

section, we draw sdf graphs only at time moments, in which no actors are firing.

thesis April 1, 2010 14:45 Page 62 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

62

4
.4
.2
–
R
e
w
r
it
in
g
t
a
sk

g
r
a
p
h
s

P,8 C,5
1

1
1 1

1
1

2 1

12 5

Figure 4.6 – Example model of fifo communication

This implies that all available tokens are expressed in the figures.

For every sdf graph, a repetition vector q can be determined. A repetition vector

denotes the smallest number of firings for each actor, such that the production

and consumption of tokens for all edges are balanced. In other words, for an edge

from actor s to actor d with production rate p and consumption rate c, it holds that
p ⋅ qs = c ⋅ qd .

Modelling

We use a few modelling techniques to express (elements of) execution layouts as

sdf graphs. As is common practice in embedded system applications, a task is

expressed as a single actor4. An actor in an sdf graph may fire infinitely many times

simultaneously, but tasks are executed on finite resources and thus require a further

constraint in the model. The actors modelling tasks therefore have a ‘self-cycle’, i.e.

if actor a is modelling a task, the sdf graph contains an edge ⟨a, a⟩ with production
and consumption rate 1.

First-In First-Out (fifo) buffers can bemodelled using two edges, where onemodels

the data flowing in one direction and the other models free buffer space flowing

in the opposite direction. An example of an sdf graph modelling two actors, one

producer (P) and one consumer (C), communicating through a fifo buffer with a

capacity of 5 tokens is shown in figure 4.6. As a visual reminder of the fact that we

model a buffer, the edges that model free space are dashed. In terms of sdf graphs

however, they are normal edges.

There are different programming models (e.g. [12]) that can be translated directly

to this modelling technique. However, it is quite common practice to manually

derive an sdfmodel. How the sdf graph is obtained is beyond the scope of this

thesis.

4.4.2 rewriting task graphs

Because tasks are modelled with a single actor, the task graph already provides the

initial structure of the sdf graph. Per stage of the heuristic search method, the

4As opposed to, e.g. a common application of sdf graphs in compilers, where actors usually
correspond to blocks of code.

thesis April 1, 2010 14:45 Page 63 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

63

C
h
a
p
t
e
r
4
–
K
a
ir
o
s:
a
n
o
sr
m
im

p
l
e
m
e
n
t
a
t
io
n

choices made in that stage are translated into changes of the final sdf graph. In the

current implementation (see section 4.5), the production and consumption rates are

fixed for every channel. For increased precision and flexibility, the communication

granularity should be allowed to vary from one implementation to the next. The

rewriting operations per stage are as follows:

1. Binding: Having selected implemenations for all tasks, tasks’ actors can now

be annotated with their implementation’s execution time as their firing time.

The execution time of an implementation is the time it would cost to execute

that implementation given exclusive access to a HwE of the corresponding

type. The number of tokens on an actor’s self-edge is determined by an

implementation’s internal parallelism (i.e. how many consecutive executions

can be started before finishing their current execution). In most cases, only

one execution is possible simultaneously.

2. Mapping: With the mapping of tasks (and thereby implemenations) to HwEs,

every implementation can now be scheduled on its HwE. The execution time

from the previous step, with the scheduler settings from the HwE a task is

mapped to, can be translated to a response time [104], which compensates

for arbitration overhead. Actors’ firing time annotation is changed to this

response time.

3. Routing: When channels are mapped onto paths, the temporal behaviour

of the interconnection components on a path need to be modelled in sdf.

Quite a lot of work has been done for different architectures of interconnect

[42, 43, 52] and there are general models [104] for resources that fall under a

specific class (e.g. latency-rate servers, budget servers). Using these models,

for every channel in the task graph, there is a pair of edges in the sdf graph

that needs to be rewritten to express the effects of routing.

The rewriting for the routing stage needs to take into account effects (esp. on

latency) caused by communicating through the interconnect. Many interconnect

architectures contain fifo buffers [22, 40, 42, 52], but the total buffer capacity on a

path through the interconnect is typically at least an order ofmagnitude smaller than

buffers intrinsic to the application [12]. When buffers are too small, applications

may deadlock. Increasing the size of buffers in a deadlock-free application never

introduces deadlock, weakly increases throughput and increases maximum latency

[42, 101, 102].

Given these considerations and the fact that the routing stage constructs routes that

provide sufficient throughput for the routed channel, we do not need to explicitly

model the buffer capacities and throughput limitations of routed channels. We do,

however, need to model the latency, especially because this can form a throughput

bottleneck when the task graph contains cycles (directed or undirected). Obviously,

data having to traverse a route imposes latency, but the reverse flow of free space

may also experience latency [52], e.g. when the route’s buffers are distributed over

multiple routers. An example of the rewritten sdf graph of the example in figure 4.6

to include routed communication is depicted in figure 4.7. Actors P and C occur as

thesis April 1, 2010 14:45 Page 64 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

64

4
.4
.3
–
T
h
r
o
u
g
h
p
u
t
a
n
a
ly
sis

P,8 C,5

D,8

B,8

2

1 1

1

1

11

2
5

1
1

1 1
1

1

Figure 4.7 – Example model of two mapped tasks with a routed channel.

they were. The edges between them have been replaced by a model of the routed
channels. Actor D models the latency imposed on messages from P to C. Actor B
models the latency imposed on the notification of available buffer space from C to

P.

4.4.3 throughput analysis

To determine the guaranteed throughput of an application, we perform a simulation

of the behaviour described by the sdf graph that is obtained from rewriting the task

graph. To this end, we assume that the sdf graph executes in a self-timedmanner,

i.e. that every actor fires as soon as it is enabled [44]. In other words, we assume

the sdf graph describes the complete temporal behaviour of the application.

The simulation consists of the traversal of graph states. A graph state consists of the

number of tokens on each edge and the list of firing actors with their time until

completion. For every time unit, first, all actors to complete a firing produce their

tokens and, second, all actors that are now enabled start firing. The simulation

continues until a graph state is reached that has been reached before, i.e. a cycle is

found.

Many streaming applications have some sort of start-up behaviour before they show

the expected (quasi-)periodic behaviour. In terms of our simulation, this means that

there are a few graph states not part of the cycle. These ‘start-up’ states are referred

to as the transient phase, whereas the cycle of graph states to follow is referred to

as the periodic phase. From any state in the periodic phase, letting every actor fire

as many times as indicated by the repetition vector returns the graph to the same

state. Passing through all states of the periodic phase once is called a graph iteration.
Because we assume the periodic phase to last orders of magnitude longer than the

transient phase, i.e. the transient phase is considered incidental, QoS guarantees

are given for the periodic phase only.

Now we can determine the throughput of the sdf graph. The throughput of any

actor of the sdf graph is equal to the average number of firings per time unit in

the periodic phase of the self-timed execution. Thus, the throughput of an actor is

determined by counting the number of times it fires in the periodic phase, divided

thesis April 1, 2010 14:45 Page 65 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

65

C
h
a
p
t
e
r
4
–
K
a
ir
o
s:
a
n
o
sr
m
im

p
l
e
m
e
n
t
a
t
io
n

by the duration of one traversal of the cycle of states. The throughput of the entire

sdf graph is defined as the throughput of any of its actors, divided by that actor’s

number in the repetition vector. For detailed discussions and proofs of this method,

we refer to [33].

4.4.4 latency analysis

Latency constraints are typically constraints on endpoints of an application, i.e.

constraints on the latency between some input and some output. Thus, modelling

latency involves a relation between two actors; source and sink. There are two

ways to look at latency constraints: the Early Latency Response (elr) and the Late

Latency Response (llr). When all actors in the graph fire asmany times as indicated

in the repetition vector, elr is the time between the start of the first firing of the

source actor and the start of the first firing of the sink actor, whereas llr is the time

between the start of the first firing of the source actor and the completion of the last
(as indicated by the repetition vector) firing of the sink actor.

The sdf graph can be rewritten to a latency graph [34] to express these latency

responses. For example, the llr between two actors, s and d, can be observed as

follows: Add an actor srcwith an edge to s with production rate qs and consumption

rate 1. Add an actor snkwith an edge from d with production rate 1 and consumption

rate qd . If we let src fire once and wait until snk fires, we know the llr from s to d.
The elr can be determined by, instead of having an edge from d to snk, replicating
all edges coming into d, to also come into snk, i.e. by giving snk the same enabling

conditions as d. In the remainder, we focus on llr constraints.

Instead of producing a latency graph for each latency constraint and verifying them

independently, the same idea can be applied to express latency constraints as used

for throughput constraints [69]. A latency constraint between actor s and actor d
implies that d limits the throughput of s. This is expressed by adding a dependency

on d to s. This dependency consists of an added actor c, with an edge from d and

an edge to s. The firing time of actor c is a function δ on the maximum allowed

latency L. Below, we will explain why a meaningful latency constraint requires a

constraint on the jitter of the arrival rate. This jitter is modelled by a parameter β.
The dotted elements in figure 4.8 model latency constraint c with parameters β and

L.

Of course, latency constraints should be formulated in application specific terms

and not in terms of the sdf graph modelling the application. To this end, we offer

the following intuition: A latency constraint specifies the maximum allowed time

between the arrival of a unit of work and its llr. However, since any platform offers

only a finite throughput, the rate at which work arrives effects the latency per unit

of work. Given that the first unit of work arrives at time t0 then its llr will occur

no later than t0 + λ, where λ depends on the application itself and the execution

layout constructed for the application. When consecutive units of work arrive at the

same rate as the running application’s guaranteed throughput, all units of work will

thesis April 1, 2010 14:45 Page 66 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

66

4
.4
.4
–
L
a
t
e
n
c
y
a
n
a
ly
sis

s,x d,y

c,δ(L)

1

qd

1

β ⋅ qs
qs

Figure 4.8 – Latency constraint expressed as throughput limitation

ρ

t0 + λ − L t0 t0 + λ

workload

guaranteed

response

jitter

bound

overload
underrun

β

time

w
or

k

Figure 4.9 – Illustration of the parameters of latency constraints

incur a maximum latency of λ. If work arrives at a higher rate than the guaranteed

throughput (overload), the latency per unit of work may increase. If work arrives at

a lower rate than the guaranteed throughput (underrun), the maximum latency will

still be λ, but the desired throughput will, of course, not be achieved. The arrival of

work and the parameters of the guarantees are illustrated in figure 4.9.

To bound the latency per unit of work, given a throughput guarantee ρ, thus requires
a characterization of the arrival rate. This characterization is given in terms of a

maximum bound on the arrival jitter β: All work that arrives no later than t0 + t ⋅ ρ
and no sooner than t0 + t ⋅ ρ − β

ρ will incur a latency of at most L.

Given a minimum throughput constraint ρ and constraint parameters β and L, the

thesis April 1, 2010 14:45 Page 67 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

67

C
h
a
p
t
e
r
4
–
K
a
ir
o
s:
a
n
o
sr
m
im

p
l
e
m
e
n
t
a
t
io
n

Hardware

Platform drivers

Configurator Plat. desc.

Kairos

Dependability manager Bin. handler

MPSoC applications

Li
nu

x
ke

rn
el

Figure 4.10 – crisp software stack

firing time of actor c in figure figure 4.8 is defined as

δ(L) = max(β
ρ
− L, 0)

4.5 Implementation: Kairos

In the context of the crisp project [80], an on-line spatial resource manager in

a Linux kernel is developed to manage the project’s development platform. The

platform contains one Arm processor (running the Linux kernel) and numerous

other processors and managed memories (described in more detail in section 5.1.1)

to which tasks can be assigned. The on-line spatial resource manager as described

above and components required for its integration in a Linux kernel are imple-

mented in a prototype implementation, called Kairos. Kairos requires a description

of the platform (the processors andmemoriesmentioned above and the connections

between them). Furthermore, a handler is required to load binaries, i.e. the represen-

tation of applications on ternary storage. Figure 4.10 shows the crisp software stack.

The elements in bold are all part of the prototype implementation and discussed

below. The other elements are required by the crisp targets. To produce a system

with run-time fault detection capabilities, the dependability manager periodically

tests HwEs. The configurator performs run-time reconfiguration of the platform.

thesis April 1, 2010 14:45 Page 68 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

68

4
.5
.1
–
U
se
r
in
t
e
r
fa
c
e
:
st
a
r
t
in
g
a
p
p
l
ic
a
t
io
n
s

Task

id : uint32
name : char[20]
responseTime : uint32
implementations : Implementation[*]
ports : Port[*]
bound_to : Implementation
mapped_to : HwE

Port

id : uint32
task : Task
type : uint32
rate : uint32
channel : Channel

Channel

id : uint32
src : Port
dst : Port
initialTokens : uint32
minBandwidth : uint32
route : Link[*]

Implementation

task : Task
type : uint32
execTime : uint32
mips : uint32
memorySize : uint32
numSlots : uint32
dynamicCost : uint32

Application

id : uint32
name : char[20]
event : Event
tasks : Task[*]
channels : Channel[*]
constraints : Constraint[*]

1..*

2

1..*

1..*
0..*

Figure 4.11 – Structures used for Kairos meta-data.

4.5.1 user interface: starting applications

Starting applications should, from a user’s perspective, be ‘business as usual’. On

Linux, thismeans that a binary can be started from a terminal and the kernel handles

the bootstrapping of the binary file to a running process. The type of application

that can be run on some of the processors in the platform, rather than on the Arm

running Linux, is different from ‘normal’ applications, because they can not be

expressed in the common binary formats [74, sect. 3.12]. TheseMPSoC-applications

must carry with them themeta-data required by Kairos to assign platform resources.

Data structures

The data structures Kairos uses for this meta-data can be modelled as shown in

figure 4.11. All the meta-data described in this chapter, including the task graph and

implementation set can be expressed in this data structure. The binary file format

must contain a data structure as shown in figure 4.11.

thesis April 1, 2010 14:45 Page 69 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

69

C
h
a
p
t
e
r
4
–
K
a
ir
o
s:
a
n
o
sr
m
im

p
l
e
m
e
n
t
a
t
io
n

Application

Header

Meta-data (task graph, etc.)

Header

Ports
ImplementationsT

as
k

1

Header

Ports
ImplementationsT

as
k

2
Channels

Constraints

Binaries

Header
Bootstrap commands

DataB
in

ar
y

1

Header
Bootstrap commands

DataB
in

ar
y

2

Header
Bootstrap commands

DataB
in

ar
y

3

Figure 4.12 – The MPSoC binary file format

Binary file format

The MPSoC binary file format is inspired by Apple’s Macho-O file format, which

is used to store multiple (binary) programs and libraries in a single file, providing

data and both statically and dynamically linked library code [5]. Similar to how

Apple arranged their universal binaries, the MPSoC binary file format packs the

different implementations for all the tasks of an applications into a single binary

file. The file’s header contains the meta-data.

Figure 4.12 shows the MPSoC binary file format. All meta-data is grouped at the

beginning of the file, to prevent unnecessary seeking in the file. After Kairos has

assigned tasks to implementations and resources, the configurator (see figure 4.10)

can load only the required binary data from the file, without seeking, because the

file offset is known from the implementations field of the task record. A more

detailed specification of this file format is given in [15].

thesis April 1, 2010 14:45 Page 70 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

70

4
.5
.2
–
L
in
u
x
k
e
r
n
e
l
w
o
r
k
f
l
o
w

The file format corresponds closely to the data structures used by Kairos, which

makes constructing the meta-data for Kairos very simple. This gives a straightfor-

ward and well-defined entry point into the kernel, which is discussed next.

4.5.2 linux kernel workflow

A core task of an operating system kernel is the starting of programs. Regard-

less of the user interface, when a program must be started, the system call exec

is invoked in the Linux kernel. At this point, the kernel does not load the pro-

gram’s binary file (‘binary’, for short) from disk, but uses the binary’s header to

find a handler that supports the file format of the binary. It does this by means of

the search_binary_handler function. We introduce a new binary handler for the

MPSoC binary file format.

From the file header described in figure 4.12, the data structures described in

figure 4.11 are initialized. Next, they are placed inKairos’ request queue. Kairos uses a

queue, because it can not allocate resources for multiple applications simultaniously.

Using a queue also allows for the reordering of requests, e.g. releasing resources after

an application terminates is a very cheap (fast) operation, so removal requests on

the queue should always be handled before allocating resources to new applications.

When taken from the queue, a request is handled by Kairos. Upon completion,

Kairos reports the result to the user and, if successful, passes the resulting execution

layout to the platform configurator. This structure is shown in figure 4.13.

4.5.3 user interface: interaction with running applications

In accordance with Linux custom, Kairos makes information about running appli-

cations available in the Process File System (ProcFS). However, to list applications

or tasks from applications in the normal process table is not possible. This would

require the kernel to provide scheduling parameters and memory maps. Since the

kernel is assumed to run on a controlling processor, but not on the HwEs, it can

not provide these data.

Instead, Kairos creates custom entries in ProcFS that allow users to interact with

applications running on the platform. Additionally the platform state and other

useful information is exported to ProcFS. This allows the user to instruct the

resource management algorithms (e.g. adjust configuration parameters) and to

monitor the platform. For a full specification of the complete user interface, we

refer to [15].

thesis April 1, 2010 14:45 Page 71 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

71

C
h
a
p
t
e
r
4
–
K
a
ir
o
s:
a
n
o
sr
m
im

p
l
e
m
e
n
t
a
t
io
n

user : User :Kernel space :MPSoC Binary Handler :Spatial Resource Manager :MPSoC Configurator

exec()

search_binary_handler()

load_mpsoc_binary()

check_file_header()

add_application()

wait_for_completion

do_binding()

do_mapping()

do_routing()

do_validation()

KairosKairos

completed()

configure()

status

status

Figure 4.13 – Sequence diagram of Kairos’ kernel workflow

4.6 Conclusion

In this chapter, we have shown how on-line spatial resource management can be

implemented. This was done on a conceptual level by algorithms and their analysis,

and on a concrete level by means of an implementation in a Linux kernel, providing

user interfaces that adhere mostly to common practices. Furthermore, the input

required by the on-line spatial resource manager has been specified and intuitions

have been offered to designers of applications on how to interpret abstract concepts

in this input.

thesis April 1, 2010 14:45 Page 72 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

thesis April 1, 2010 14:45 Page 73 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Ch
ap

te
r5

osrm exploration

Abstract – In this chapter, the algorithms introduced in the previous
chapter and, more specifically, their implementations are applied in a case
study and to a benchmark. The performance is evaluated in terms of the
quality of the result and in terms of computational and memory cost. The
case study is a concrete case from Thales, an industrial parter in a European
project. The benchmark is developed for this purpose and discussed in detail
before the results are presented.

5.1 Case study: Beamformer

Beamforming is a signal processing technique to control the directionality of a

generated or received signal. One scenario in which it is applied is with phased
array antennas [84, Ch. 9], where a set of small non-directional antennas simulate

one large directional antenna. Without having to move the antenna array, the

simulated antenna can be pointed towards a signal source electronically. When the

non-directional antennas are arranged in a line or on a two-dimensional surface, a

wave front coming into the array at an angle will arrive at the different antennas

at different times. By delaying signals received by antennas, such that all signals

are synchronised in time, and summing up the delayed results, signals from other

directions are suppressed and the signal from the direction of the beam is amplified.

Alternatively, beams can also be formed by operations in the frequency domain by

shifting the signal phases of the antennas. This method is especially useful in digital

thesis April 1, 2010 14:45 Page 74 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

74

5
.1.1

–
P
l
a
t
f
o
r
m

beamforming, since multiple beams can be formed from the same antenna array

by applying different phase shift values to the same signals. In radar systems, for

example, this is used to track multiple targets simultaneously. From an application

point of view, this means there are as many input streams as there are antennas and

as many output streams as there are beams being formed.

The beamforming application used for this case study was developed in the crisp

project [80]. It is a phased array radar application for nautical use. It is a streaming

application, characterized by a high data rate and critical timing requirements.

Some filtering and equalization is employed to improve the quality of the individual

input streams, i.e. signals from antennas. The output streams, i.e. the beams, require

Doppler analysis and other radar filtering and processing [84]. For the case study,

16 antennas and 8 beams were assumed.

The purpose of this case study is twofold. On the one hand, it tests Kairos to see

how it performs with a single application with resource requirements close to the

total resource capacity offered by the platform it must run on. On the other hand,

it is used to demonstrate a real-life, large scale application. Both success rate and

execution time are of importance for this test.

5.1.1 platform

The crisp platform consists of three types of devices: Reconfigurable Device (rfd),

General Purpose Device (gpd) and Field Programmable Gate Array (fpga). A

rfd contains nine Xentium processors1, two smart memories and a dependability

manager (used for run-time testing of processors, memories and interconnect). As

described in chapter 3, every one of these components is seen as a HwE. The HwEs

on a rfd are interconnected by a NoC. A gpd contains one Arm processor with

memory and i/o-facilities for system control and observation. The crisp platform

contains five rfds, one gpd and one fpga. The gpd is used as a controller of the

total platform, running a Linux kernel with Kairos. The interconnection of the

gpd, rfds and fpga is realized by a point-to-point, address mapped interconnect

with two ports on the gpd, four on each rfd and ten on the fpga. A schematic

representation of this platform is shown in figure 5.1.

5.1.2 application

At the time of writing, no exact execution times for tasks are known, as the de-

velopment of the application is still ongoing. However, preliminary numbers on

processing load onHwEs are available. We use these numbers to derive an execution

time for each task.

We assume that a Xentium processor running at 200 MHz has a processing power

of 800 Million Multiply Accumulate (mmac) per second. Tasks are assumed to

1A proprietary architecture, developed by crisp participant Recore Systems B.V.

thesis April 1, 2010 14:45 Page 75 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

75

C
h
a
p
t
e
r
5
–
o
sr
m
e
x
p
l
o
r
a
t
io
n

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

6061

Figure 5.1 – Visualisation of the crisp platform

impose a load of 640 mmac per second at a token rate of 2.5 MHz. This renders an

execution time per token of 320 nanoseconds:

640MMAC
s

800MMAC
s ⋅ 2.5MHz

= 320ns

This execution time per token is smaller than the clock period of the Xentium,

because samples are processed in parallel. Since no data is available (yet) to model

the application closer to the actual implementation, we except this inaccuracy.

Modelling the system with such a sequentiality is a worst-case assumption, even if

the time required per token in that sequential formulation is optimistic.

Every task of the beamformer has only one implementation. Therefore, this test case

only tests the mapping, routing and validation phase. However, the implementation

of Kairos is not changed for this problem, so the binding phase is executed. Thus,

the effects caused by the binding phase’s initialization of the mapping phase (see

section 4.1.1) is still taken into account. Because Xentiums are not assumed to

be multi-tasking in this platform, the execution times estimated by the method

described above are considered to be response times. The whole application model

is shown in figure 5.2, using the sdf notation introduced in chapter 4. The contents

of these actors are not discussed here. They are irrelevant to the execution of Kairos.

What is important is the structure of the application, the firing times of the actors

and the token rates of the edges. The grey circles labelled pf i are clusters of actors.

thesis April 1, 2010 14:45 Page 76 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

76

5
.1.2

–
A
p
p
l
ic
a
t
io
n

in0,
400

1

in1,
400

1

in2,
400

1

in3,
400

1

hf0,
320

8 8 bpf0,
160

1 1

hf1,
320

8 8 bpf1,
160

1 1

hf2,
320

8 8 bpf2,
160

1 1

hf3,
320

8 8 bpf3,
160

1 1

fr0,
400

4

1

11
1

1 1

1

1

pf0 sa0,
80

sb0,
80

out0,
0

pf1 sa1,
80

sb1,
80

out1,
0

pf2 sa2,
80

sb2,
80

out2,
0

pf3 sa3,
80

sb3,
80

out3,
0

sum,
400

4 4 8 8 8

84 4 8 8
8

8

4 4 8 8
8

8

4 4 8 8 8

8

4

4

4
4

4
4

4

4

4×1

1l0,
1280

l0,
1280

l0,
1280

l0,
1280

14×8

4×1

4×1
1l8,

1280
l8,

1280
l8,

1280
l8,

1280

14×8
4×1

4×1

1l4,
1280

l4,
1280

l4,
1280

l4,
1280

14×8

4×1

4×1

1l12,
1280
l12,
1280
l12,
1280
l12,
1280

14×8

4×1

Figure 5.2 – Beamformer application model (buffers and self-loops omitted)

thesis April 1, 2010 14:45 Page 77 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

77

C
h
a
p
t
e
r
5
–
o
sr
m
e
x
p
l
o
r
a
t
io
n

For brevity, only the expansion of pf 0 is shown.

Performance constraints

This application has a specified input frequency, from which the throughput con-

straint is derived. The input frequency is 2.5 ⋅ 106Hz, thus the throughput require-
ment is:

ρ = 2.5 ⋅ 10−3 tokens
ns

The application buffers are unknown, so we model buffers conservatively by assum-

ing the smallest buffer sizes needed for deadlock-free execution. Added buffering

from communication paths and the required synchronisation may cause significant

extra latency. Therefore, latency constraints are required to guarantee the appli-

cation’s maximum latency specification. As described in section 4.4.4, a bound β
on the input jitter is required. Even though the input is strictly periodic, we do

specify β = 8 to allow the pipeline to be filled completely (i.e. maximally parallel

execution).

The sum of response times of the application’s critical path is 1840 ns. The lowest

response time in the application is 80 ns. With assumed minimal buffer sizes, the

maximum allowed llr is 1840 + 80 = 1920 ns. The firing time of the latency

constraint actors l i is thus determined by

δ(l i) =
β
ρ
− l i = 3200 − 1920 = 1280 ns

For brevity, the buffer models and self-loops have been omitted and the (dashed)

edges and actors modelling latency constraints have been grouped per four in

figure 5.2.

5.1.3 results

The beamformer application requires i/o tasks to be fixed on specific ports of the

fpga, i.e. every input task is fixed to a specific port. In other words, the mapping

of every i/o task is constrained to a specific fpga port. When these mapping con-

straints are omitted, Kairos generally fails to find execution layouts. This is caused

mainly by the segmentation of the platform. Starting from the fpga, the platform ap-

pears homogeneous, but when tasks from the same clustered input (pf i in figure 5.2)
are mapped onto different rfds, either not all channels are mapped onto routes, or

latency constraints are violated. The assumption of the fixed i/o tasks is reasonable,

however, because in any final implementation, the input tasks are also bound to

specific i/omodules. With these fixed starting points, the success rate is sensitive

to the weights of the fragmentation and communication components of the cost

function (see the discussion of the MapC algorithm in section 4.2). Figure 5.3 shows

thesis April 1, 2010 14:45 Page 78 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

78

5
.1.3

–
R
e
su
lt
s

0 2 4 6 8 10 12 14 16 18 20 22 24
0

200

400

600

800

1,000

Communication weight

Fr
ag

m
en

ta
ti
on

w
ei

gh
t

Application admitted

Figure 5.3 – Admission of the crisp application on the crisp51 platform with varying

mapping parameters.

Binding Mapping Routing Validation

Cost function [ms] [ms] [ms] [ms]

Communication only 57.39 83.19 54.91 12.64

Comm. & fragmentation 54.19 101.88 54.44 12.69

Table 5.1 – Kairos (averaged) run-times per phase

for which values of these weights Kairos admitted the application to the platform,

i.e. Kairos found a feasible execution layout. All integer fragmentation weights

between zero and one thousand and communication weights between zero and

twenty five were tested. The fact that, for many combinations of fragmentation and

communication weights, the application was not admitted demonstrates two things

about Kairos. Firstly, Kairos is clearly sensitive to its configuration. Secondly, in

this scenario, where there is little room in the resource budget and QoS constraints,

Kairos does not guarantee success. Arguably for the second observation, however,

the platform in this case study has clearly been designed with this application in

mind. Thus, a lot of specific knowledge with regards to the (limitations of the)

flexibility for spatial resource management that could be taken account has not

been used to steer Kairos.

thesis April 1, 2010 14:45 Page 79 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

79

C
h
a
p
t
e
r
5
–
o
sr
m
e
x
p
l
o
r
a
t
io
n

Table 5.1 shows the time used by Kairos to find an execution layout (or conclude

failure). These run-times are averaged over a few executions, but the variance was

near the reliable lower bound of the measurement itself. The run-times of the

validation phase are notably low. This is mainly due to the very high degree of

regularity in the application’s task graph and the assumption of minimal buffers

(making them proportional to the number of actors on the critical path). These

run-times show that even for very large applications on irregular platforms, Kairos

performs verywell in terms of speed. This aspect of Kairos’ performance is examined

in more detail in the next section.

5.2 Synthetic benchmarks

To allow on-line spatial resource management, applications must be designed and

implemented with some flexibility. Typically, their timing constraints should not

approach the best possible performance of the platform on which they have to

run, different implementations of tasks should be functionally interchangeable and

the information required by Kairos must be available. The number of currently

available real-life applications that meet these requirements is low and many of

those applications are proprietary, i.e. their exact specification is not published. To

compensate for this lack of test cases, we use a synthetic benchmark. For a few hand

tailored platforms (discussed in section 5.2.1), artificial applications are generated

and selected (section 5.2.2).

The applications used are typically an order of magnitude smaller (in terms of the

number of tasks) than the platforms on which they have to run (in terms of the

number of HwEs). These synthetic benchmarks are more representative for the

general case in which on-line spatial resource management is to be applied.

The purpose of the synthetic benchmarks is to compare Kairos’ run-times to those of

reference (exact) solutions (section 5.2.3) and to compare the (cost of the) solutions

found. Furthermore, the trade-offs to be made in application and platform design

can be evaluated with good synthetic benchmarks.

5.2.1 platforms

The platforms used in the benchmark are designed such, that there is a clear dif-

ference in the degree of heterogeneity. Because the reference solutions do not

take into account scheduling of HwEs, all HwEs in the benchmark platforms are

single-tasking.

The platforms defined for the benchmark are shown in figure 5.4. The MeshHo

platform (a) is a homogeneous 5×5 mesh of HwEs. All HwEs are of the same

(abstract) type ‘one’. The MeshHe9 platform (b) is derived from MeshHo, by

replacing nine HwEs of type one by HwEs of type ‘two’ in a regular pattern, as

thesis April 1, 2010 14:45 Page 80 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

80

5
.2
.2
–
A
p
p
l
ic
a
t
io
n
se
t
s

(a) MeshHo (b) MeshHe9

(c) MeshHe94 (d) MeshHeClust

Figure 5.4 – Platforms with varying degrees and distribution of heterogeneity

shown in dotted shading. A further regular replacement of four type one HwEs

by HwEs of type ‘three’ transforms MeshHe9 into MeshHe94 (c). The last mesh

platform, MeshHeClust (d) reorders the HwEs of MeshHe94 and is included

to test the sensitivity of solutions to the spreading of heterogeneity. It effectively

tests the assumptions with regards to the dominant factors in the hierarchical

decomposition of the search process, i.e. when the reference solutions provide

different bindings, the assumption that binding costs are of a considerably larger

influence on the total cost than communication costs is shown to be wrong.

5.2.2 application sets

Based on the ideas presented byKolisch, et al. [56], we have developed an application

generator. Task graphs produced by the generator are similar to those produced

by the Task Graphs for Free generator [27], but they are annotated with one or

more implementations per task, with the appropriate requirement vectors. Because

the reference solutions can not perform the QoS validation, no sdf annotation is

generated.

thesis April 1, 2010 14:45 Page 81 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

81

C
h
a
p
t
e
r
5
–
o
sr
m
e
x
p
l
o
r
a
t
io
n

(a) Application 1 (A1) (b) Application 2 (A2)

(c) Application 3 (A3) (d) Application 4 (A4)

Figure 5.5 – Task graphs of the selected applications (shading indicates the availability of an

alternative implementation)

From the generated applications, a selection is made, such that nomore applications

can be added without overloading the platform. The selection consists of four

applications that together require slightly less resources than the platforms offer.

The applications’ task graphs are depicted in figure 5.5. All tasks in these applications

have implementations for the basic (i.e. unshaded) HwE type. The shaded tasks

also have an implementation for the HwE type drawn with the same shading in

figure 5.4.

5.2.3 reference solutions

In order to find reference solutions, we model (part of) the overall problem as an

Integer Linear Program (ilp) (see below) and solve this by cplex [1]. Preferably,

reference solutions should give a perfect solution of the overall problem. Unfortu-

nately, our problem is too complex to be solved in pure ilp-terms, especially on

the workstations and/or servers available to this research (most notably, combining

spatial resource management with temporal scheduling is too complex). Although

using more advance programming models (such as second-order cone program-

ming [14]) on larger computer systems could likely provide more detailed solutions,

we consider the likelihood that an exact solution for non-trivial cases in complete

detail can be found in reasonable computation time to be very low.

Applications are assumed to arrive in-order. A perfect solution is a clairvoyant one,

that solves the assignment problem for all applications at once. Whether or not to

search for clairvoyant solutions does not significantly change the ilp, but rather the

manner in which it is applied. Clairvoyant solutions can be found by providing all

applications as input to the ilp at once, whereas applying the ilp incrementally to

thesis April 1, 2010 14:45 Page 82 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

82

5
.2
.3
–
R
e
f
e
r
e
n
c
e
so
l
u
t
io
n
s

the applications gives the in-order solution. The only difference in the ilp is that not

all tasks have to be assigned, but rather either all or none of the tasks per application
have to be assigned.

To reduce the complexity, two notable concessions are made in the formulated ilp.

Firstly, the distinction between, on the one hand, routers andHwE and, on the other,

interfaces and links is not modelled. In the ilp, a platform consists exclusively of

HwEs and links. This concession does not harm the precision of the solutions found,

because the platforms are modelled such that all (resource) restrictions imposed

by routers and interfaces can be formulated in terms of restrictions imposed by

links. To be able to route channels across multiple links, routers are modelled as

HwEs with zero capacities, so that no tasks can be assigned to them, but links can

be traversed between them. Secondly, no validation of execution layouts occurs, i.e.

the QoS constraints are not checked. This concession does introduce imprecision

in the solutions found: The resulting cost becomes a lower bound on the cost of the

real optimal solution.

The ilp used to find reference solutions, discussed below, is the following:

minimize ∑
t∈T
∑

i∈I(t)
∑
e∈E

ζπt i eα
π
t i e +∑

c∈C
∑
l∈L

ζγc lα
γ
c l (1)

subject to ∑
i∈I
∑
e∈E

απ
t i e = 1 ∀t ∈ T (2)

∑
i∈I
∑
e∈E
(1 − τ i e)απ

t i e = 0 ∀t ∈ T (3)

∑
⟨u ,v⟩∈L
v=e

αγ
c⟨u ,v⟩ ≤ 1 ∀c ∈ C , e ∈ E

(4)

∑
⟨u ,v⟩∈L
v=e

αγ
⟨s ,d⟩⟨u ,v⟩ + ∑

i∈I(s)
απ
s i e

= ∑
⟨u ,v⟩∈L
u=e

αγ
⟨s ,d⟩⟨u ,v⟩ + ∑

i∈I(d)
απ
d ie

∀⟨s, d⟩ ∈ C , e ∈ E (5)

∑
t∈T
∑

i∈I(t)
rki α

π
t i e ≤ cke ∀k ∈ R, e ∈ E

(6)

∑
c∈C

rkc α
γ
c l ≤ c

k
l ∀k ∈ R, l ∈ L (7)

απ
t i e ∈ {0, 1} ∀t ∈ T , i ∈ I(t), e ∈ E (8)

αγ
c l ∈ {0, 1} ∀c ∈ C , l ∈ L (9)

with input

ζπt i e cost of assigning task t with implementation i to HwE e
ζγc l cost of assigning channel c to link l
τ i e 1 if implementation i and HwE e have the same type, else 0

rki component k of the requirement vector of implementation i

thesis April 1, 2010 14:45 Page 83 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

83

C
h
a
p
t
e
r
5
–
o
sr
m
e
x
p
l
o
r
a
t
io
n

rkc component k of the requirement vector of channel c

cke component k of the capacity vector of HwE e

ckl component k of the capacity vector of link l
and output

απ
t i e whether task t is assigned to HwE e with implementation i
αγ
c l whether channel c is assigned to link l

The objective (eq. 1) is to minimize the total cost of all assignments. With regards

to the task assignments (απ
t i e), all tasks must be assigned precisely once (eq. 2).

Furthermore, it must hold that no implementation is assigned to an HwE of another

type (eq. 3). Communication channels should not be mapped onto cyclic paths. To

prevent this, eq. 4 states that any channel may arrive at any one HwE only once

(with routers modelled as HwEs). The balance equation eq. 5 states that any channel

that comes into an HwE must either end there, or also go out (and vice versa).

Finally, the cumulative resource requirements of either tasks or channels may not

exceed the capacities of the HwEs and links they are assigned to (eqs. (6) and (7))

and all assignments are binary (eqs. (8) and (9)).

5.2.4 results

The benchmark results are presented in full detail in appendix A. In this section, we

first evaluate the performance of Kairos, compared to that of the reference solution.

Because the case study in section 5.1 shows that Kairos is sensitive to its configuration

(the balance between the fragmentation and communication components of the

cost function), four configurations of Kairos are tried. One configuration tries to

balance communication and fragmentation. Two configurations try to optimize for

one of the two. The last configuration adds no cost for either. The details of these

configurations are also in appendix A. Performance is measured both in terms of

the quality of the result, as well as in the time and memory required to produce

it. Next, we discuss observations made during these benchmarks with regards to

platform design.

Resource management methods

It is important to note that Kairos performs QoS validation, whereas the reference

solution does not. This means that the cumulative costs of the reference solution are

lower bounds (i.e. not all solutions found by the reference solution are guaranteed

to be feasible). Also, Kairos’ requirements, both computational and memory, are

significantly lower than those of the reference solution.

Cumulative cost Figure 5.6 shows the summary of the cumulative costs. For all

four architectures (shown in figure 5.4), the applications (A1 through A4, shown in

thesis April 1, 2010 14:45 Page 84 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

84

5
.2
.4
–
R
e
su
lt
s

figure 5.5) are started, one after the other. Then, the platform is reset (the vertical

lines through the x-axis in the figure) and the applications are started in reverse

order (A4 through A1). The graph shows the sum of costs all running applications,

where the striped bars represent the results of the incremental ilp, and the dotted

bars show the results of the different Kairos configurations: The dotted area shows

the best resulting cost, the top of the unshaded area shows the worst and the grey

line indicates the average of all four Kairos configurations. Quite remarkably, for

MeshHeClust, the incremental ilp failed to find a solution for application A4

after the other three applications were started.

On average, the cost performance of Kairos is approximately 11% above that of the

reference solution. The relative difference typically reduces as more applications are

added to a platform. The average result over the different Kairos implementations is

further away from the ilp solution for increasing heterogeneity of the platforms. We

ascribe this sensitivity to the separation of binding and mapping, because binding

does not take locality of available HwEs into account.

The fact that there is no solution for applicationA4 on platformMeshHeClust after

the incremental ilp has started applications A1 through A3, is a lucky coincidence

for Kairos in this benchmark. However, it does demonstrate that using the optimal

assignment for every individual application, does not guarantee an overall optimum.

This case did beg for a clairvoyant ilp solution, where time is modelled in intervals

and the arrival of applications is known beforehand. The results of this clairvoyant

ilp are listed in appendix A. However, since scenarios in which the arrival order of

applications is known beforehand can be scheduled completely off-line, clairvoyant

solutions have only weak relevance to the problem at hand.

Performance Kairos is one order of magnitude faster than the reference solution

in the worst case (all applications in all scenarios were finished in under 50 ms)

on a core (Arm926 at 200 MHz), that is at least one order of magnitude slower

than a single core (Intel Xeon E5430 at 2.66 GHz) on which the ilp solution is

executed. Some solutions for the incremental ilp took more then ten seconds to

find. The worst-case clairvoyant solution (homogeneous platform) took over 86

hours. Furthermore, the ilp solution is executed on a quad-core processor (that are
all under near full load throughout the execution), whereas Kairos is executed on a

single core. It is thus safe to conclude that Kairos is at least two orders of magnitude

faster than the ilp solution and, in many cases, considerably more.

The difference in memory usage is also considerable. The incremental ilp solution

reported memory usage of 80–90mb. Unfortunately, it is hard to measure the

memory usage of Kairos accurately. The problem is that Kairos is not a separate

process, but part of the kernel. The Linux kernel improves its own performance by

caching requested memory pages. We have analysed the size of the kernel cache

after starting every application2. The maximum kernel memory usage, including all

2Cache sizes were taken from the /proc/slabinfo facility.

thesis April 1, 2010 14:45 Page 85 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

85

C
h
a
p
t
e
r
5
–
o
sr
m
e
x
p
l
o
r
a
t
io
n

100

200

300

400

500

600

co
st

A1 A2 A3 A4 A4 A3 A2 A1

(a) MeshHo

100

200

300

400

500

600

co
st

A1 A2 A3 A4 A4 A3 A2 A1

(b) MeshHe9

100

200

300

400

500

600

co
st

A1 A2 A3 A4 A4 A3 A2 A1

(c) MeshHe94

100

200

300

400

500

600

co
st

A1 A2 A3 A4 A4 A3 A2 A1

(d) MeshHeClust

incremental ILP Kairos

Figure 5.6 – Cumulative cost

thesis April 1, 2010 14:45 Page 86 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

86

5
.3
–
C
o
n
c
l
u
sio

n

cached pages never exceeded 25mb.

Platforms

Since the execution costs of specialized implementations are lower than those

of their counterparts for general purpose HwEs, it follows that the cumulative

costs are lower as well. However, these benchmarks show that this heterogeneity

is exploitable in practice. Platforms such as the one used in [68] rely heavily on

resource management that can cluster communicating tasks on the same HwEs,

because they are bandwidth constrained. Such clustering is not generally applicable

when neighbouring tasks in a task graph do not have implementations for the same

type of HwE. When locality can not be exploited by clustering, such platforms

become bandwidth constrained. This observation can also be made about the

different results for MeshHe94 and MeshHeClust, where for the former, results

are better than for the latter. The fact that the ilp does not find a result for application

A4 on MeshHeClust in one scenario is, because the trade-off between cheaper

execution on a specializedHwE and the distance between thatHwE and otherHwEs

to which other tasks of the same application are alreadymapped, is decided in favour

of locality for some tasks in the first three applications. Starting application A4 fails,

because there are not enough general purpose HwEs (the type of which the entire

MeshHo platform consists of and for which every task has an implementation)

are available. The observation that the exploitation of heterogeneity requires more

interconnection capacity is supported by the measured average path length (see

appendix A).

5.3 Conclusion

In this chapter, we demonstrated that Kairos is applicable in realistic scenarios. The

time it requires to find execution layouts is well within the acceptable limits for the

intended platforms and applications. The solutions found compare relatively well

to exhaustively optimized solutions.

Kairos’ performance (both in computational terms, as well as in terms of the result)

improves significantly when applications are (at least) an order ofmagnitude smaller

than the platform on which they have to run. Heterogeneity helps to reduce the

execution cost of applications, both in low and high utilization cases. On-line spatial

resource management can deal with heterogeneity, but if such flexibility is desired,

the design of platforms should take into consideration some additional constraints,

i.e. heterogeneity is best distributed evenly over the platform and the interconnect

should offer sufficient resources.

thesis April 1, 2010 14:45 Page 87 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Part II

Asynchronous Dataflow

thesis April 1, 2010 14:45 Page 88 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

thesis April 1, 2010 14:45 Page 89 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Ch
ap

te
r6

Denotational semantics of SNet

Abstract – This chapter offers a brief introduction to SNet, before dis-
cussing a denotational semantics of SNet. The semantics are expressed by
means of a translation from SNet to Haskell. Non-determinism of SNet
networks is expressed as an oracle, which is an argument to the function
produced by the translation of the network. Using this translation, a proof
is given that, for every oracle, every SNet network is prefix monotonic.

6.1 Motivation

In this chapter, the denotational semantics of SNet is discussed. In the words of

Scott and Strachey [83], the purpose of a denotational semantics is to “give a correct

and meaningful correspondence between programs and mathematical entities in a

way that is entirely independent of an implementation.” Practical applications of a

denotational semantics include proof of equivalence of two different programs (e.g.

for semantics preserving compiler transformations) and reasoning about properties

of the output of a program, given properties of the input of that program. These

applications are the motivation for a denotational semantics of SNet.

The denotational semantics presented in section 6.5 are used to show that SNet

is prefix monotonic in section 6.6. Prefix monotonicity is the specialized term for

causality in streaming languages. The property of prefix monotonicity is important,

Parts of an earlier revision of this chapter have been published in [PhH:1].

thesis April 1, 2010 14:45 Page 90 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

90

6
.2
–
A
b
r
ie
f
o
v
e
r
v
ie
w
o
f
S
N
e
t

because it enables the SNet programmer to make observations about networks,

given partial input data. A prefix monotonic program is guaranteed to be consistent,

i.e. future input does not change past output. Therefore, in terms of the position of

an input element in the input sequence, it can be determined precisely when each

of the output elements is produced. Consequently, a schedule can be derived for

the execution of a prefix monotonic program on finite resources.

6.2 A brief overview of SNet

In this section, we introduce essential features of the language SNet, a declara-

tive coordination language for asynchronous stream programming, to serve as

background information. We deliberately exclude key language features, like type

inference, that are not directly related to the subject of the work presented in this

thesis. Moreover, the syntax used here is enriched with some shorthand notations,

with regards to the official SNet syntax. For a complete coverage of SNet, including

the official syntax, we refer the interested reader to [37].

6.2.1 networks, records and streams

Every network in SNet is siso. This means that every network transforms an input

stream to an output stream. A stream is a (potentially infinite) sequence of non-

overlapping, discrete data items, called records. The basic networks are primitive
networks that can be combined by using network combinators into (non-primitive,

siso) networks.

Primitive networks perform either processing or synchronization. Processing net-
works are stateless functions, defined by the user in one of two possible ways: A

box, implemented in a programming language (referred to as the box language), or
a filter, specified in SNet terms. Synchronization networks, known as synchrocells,
combine records based on their type. All three forms of primitive networks are

described in more detail in section 6.2.4.

Records contain fields and tags. Both of these are named. Fields contain values that

are opaque to SNet, i.e. they are values for the box language. SNet can only rename,

copy or delete fields, but any other transformation on fields occurs in boxes only.

Tags contain integer values and are readable and writeable in SNet.

6.2.2 types, type matching and routing

Records are routed through a network dependent on their type. A record type is
specified by the set of names of the fields and tags contained in records of that type.

A subtype relation on record types is defined as the superset relation on sets, i.e.

when record type t contains strictly more names than record type t′, then t is a

thesis April 1, 2010 14:45 Page 91 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

91

C
h
a
p
t
e
r
6
–
D
e
n
o
t
a
t
io
n
a
l
se
m
a
n
t
ic
s
o
f
S
N
e
t

{}

{A} {B} {C}

{A,B} {B,C}

{A,B,C}

Figure 6.1 – Subtype relation between record types

subtype of t′. Figure 6.1 illustrates the subtype relation. A, B and C are the names

of fields or tags. The universal supertype is the empty set. Every set with precisely

one name is a subtype of the empty set. Every set with two names is a subtype of

both sets that contain only one of those names. The subtype relation is transitive,

e.g. (from the example in figure 6.1) {A, B} is a subtype of {B}, which is a subtype

of {}, so {A, B} is a subtype of {} also.

A network takes records from its input stream and results in records on its output

stream. Thus, network types are defined in terms of record types. Networks take

records of one type and result in zero-or-more records of possibly different types.

Networks can take different types of records as input. These are referred to as input
variants. The types of the records on a network’s output stream depend on the input

variant and (often) also on the values of fields and tags in the corresponding records

on the network’s input stream. Thus, for every input variant, a set of output variants
(record types of records that the network can produce in response to the input)

is given. Formally, if R denotes the set of all possible record types, the set of all

network types (denoted N) is defined as N = ℘ (R × ℘R), where ℘ denotes the

power set. However, for the work presented in this thesis, only the input type of a

network (the set of all the network’s input variants) is important, because these types

are used for the routing of records within the networks. For a detailed discussion of

the SNet type system and inference of network types, see [17].

If records can be used as input for a number of different networks—e.g. in case of

parallel composition, discussed below—records are routed into the network with

the strongest matching type. Here, a record type tr matches a network type tn when
tn contains at least one input variant tv that is equal to or a supertype (i.e. subset)
of tr . This means that a network does not need all fields and tags in a record. In

the next section, we discuss how the fields and tags not handled by the network are

taken into account. The strength with which tr matches input variant tv is the size
of tv , i.e. the number of names in tv . The strength with which tr matches network

type tn is that of the strongest matching input variant of tn .

thesis April 1, 2010 14:45 Page 92 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

92

6
.2
.3
–
F
l
o
w
in
h
e
r
it
a
n
c
e

6.2.3 flow inheritance

As mentioned, records can be of a subtype of an input variant of a network. In such

a case, the network does not affect the fields and tags with names not in the input

variant. The fields and tags that are not indicated in the input variant of the network

are said to ‘flow around’ the network. This is known formally as flow inheritance.

For example, consider a network with only one input variant {A, B} and a record

with type {A, B,C ,D}. The record can be fed into the network, because its type

is a subtype of the network’s input variant. However, because the network is only

defined to work on the fields (or tags) with the names A and B, only those fields are
inserted. In other words, the record is split into a through- and an around-part. The

through-part is a record {A, B} and the around-part is a record with type {C ,D}.
The through-part is inserted into the network, in response to which a result is

produced. The around-part is combined with the result. If the result is a record of

type {X ,Y}, then the combination of the result and the around-part is a record of

type {C ,D, X ,Y}. When the result contains fields with names that also occur in

the around-part, the fields in the result are preferred. Thus, if the result is a record

of type {C , X}, the combined record has the type {C ,D, X} and the value of the

field labelled C is that of field C from the result of the network.

Flow inheritance is only defined on primitive networks. Intuitively, many non-

primitive networks behave as if flow inheritance was defined on them as well.

However, such an intuitive understanding is often very misleading. The primitive

networks and their behaviour with regards to flow inheritance is discussed in

section 6.2.4. Section 6.2.5 describes the network combinators. For a more elaborate

discussion on flow inheritance and its consequences on combined networks, see

[17].

6.2.4 primitive networks

As discussed above, SNet distinguishes three different forms of primitive networks:

boxes, filters and synchrocells. The primitive networks are discussed in more detail

in this section.

Box

AnSNet box is a stateless user-defined processing primitive network. It is connected

to the outside world via a single input stream and a single output stream. A box

can start processing as soon as a record appears on its input stream. The concrete

behaviour of the box is specified outside SNet using an appropriate box language. A
box may emit zero or more records on the output stream in response to a record on

the input stream; the exact number depends both on the box’ implementation and

thesis April 1, 2010 14:45 Page 93 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

93

C
h
a
p
t
e
r
6
–
D
e
n
o
t
a
t
io
n
a
l
se
m
a
n
t
ic
s
o
f
S
N
e
t

the values of the incoming record. We call this dynamic behaviour themultiplicity
of the box.

Every execution of a box takes exactly one record from the input, i.e. multiplicity

only occurs on the box’ output. The entirety of a box’ output after consuming a

single record is called the box’ response to that record. Furthermore, since the box

is stateless, the response of the box depends exclusively on the single record of the

input. Because a box is applied in-order to the records on its input stream, it carries

over the order of the records on its input stream into a causal order on the output

stream. In other words, causal ordermeans, that if record a precedes record b on the
output stream, one of two cases hold: Either the two are part of the same response

to a record on the input stream or the record on the input stream to which a was
(part of) the response preceded the record to which b was (part of) the response.

Flow inheritance for boxes with multiplicity is defined as follows. The around-part

of an incoming record is combined (as described above) with each record in the

box’ response to the through-part. For example, assume a box that accepts records

of type {A, B} and produces records either of type {X ,Y} or of type {C , X}. Now
assume an input record with type {A, B,C ,D}, which is a subtype of the box’ only

input variant. The input record is split into a through-part, having type {A, B} and
an around-part, having type {C ,D}. The through-part is consumed by the box. In

response, the box produces two records: r of type {X ,Y} and r′ of type {C , X}.
The around-part is combined with both results. For r this results in a record of type

{A, B, X ,Y}. However, r′ contains a field or tag with the same name C is a field or

tag in the around-part. Thus, combining r′ with the around-part, discards the C
field or tag from the latter. In other words, C and X are taken from r′ and D from

the around-part to come to the combined result with type {C ,D, X}.

Filter

A filter is similar to a box in terms of its behaviour as a processing primitive network

on a stream, including causal order, statelessness, multiplicity and flow inheritance.

It is different, because it is specified in SNet by means of (simple) expressions and

it can not access fields (i.e. box language values). The structural representation of

SNet’s expression language for use in this thesis is described in section B.2.

Synchrocell

The purpose of synchrocells is to combine two or more records into a single record,

based on their respective types. A synchrocell is defined by a list of record types.

For each record type, there is a corresponding ‘slot’ in the synchrocell. In every slot,

one record of that type can be stored. When a single record is stored in a slot, that

slot is filled. Before that time, the slot is free.

thesis April 1, 2010 14:45 Page 94 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

94

6
.2
.5
–
S
N
e
t
N
e
t
w
o
r
k
C
o
m
b
in
a
t
o
r
s

Like boxes and filters, a synchrocell takes records from its input stream in-order

and one at a time. Every incoming record is matched against those record types that

correspond to free slots. For every record type of the synchrocell that the incoming

record matches, the part of the incoming record corresponding to the record type

of the synchrocell is stored in the corresponding slot, i.e. the through-part of the

record with regards to the record type is stored. When an incoming record fills all

remaining free slots, the synchrocell syncs: The records stored in the slots of the

synchrocell are combined into a single record. This combined record is produced

on the output.

This leads to three distinguishable scenarios that describe the synchrocell’s be-

haviour: 1) If the incoming record matches the record types of all remaining free

slots, the record resulting from the combination of all stored records is produced on

the output. 2) If the incoming recordmatches at least one record type corresponding

to a free slot (but not all remaining), nothing is produced. 3) The incoming record

is produced ‘as is’ when it does not match any remaining free slot’s record type.

Thus, multiplicity occurs also for synchrocells: The response to a record is either

one record or nothing. Finally, the slots of the synchrocell are not freed when the

synchrocell syncs. This implies that, after syncing, a synchrocell passes through all

incoming records (scenario 3).

Flow inheritance on synchrocells is defined slightly differently than on boxes and

filters: The around-part of the (first) record that matches the first record type

(in order of the specification) of the synchrocell is merged with the result when

the synchrocell syncs. The around-parts of the other records are discarded. This

behaviour is an SNet design choice.

6.2.5 SNet network combinators

SNet primitive networks, i.e. boxes, filters and synchrocells, are combined into

(acyclic, siso) streaming networks by means of network combinators. In other

words, network construction is an inductive process starting with boxes, filters and

synchrocells as basis. In the following, different network combinators are explained.

Sequential composition

Given two networks N and M, the sequential composition of N and M (denoted

N .. M) yields a network where all input is streamed into N , the output stream of

N becomes the input stream of M and the output stream of M becomes the output

stream of the combined network.

In principle, the sequential composition is similar to function composition. Sequen-

tial composition naturally preserves the causal order.

thesis April 1, 2010 14:45 Page 95 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

95

C
h
a
p
t
e
r
6
–
D
e
n
o
t
a
t
io
n
a
l
se
m
a
n
t
ic
s
o
f
S
N
e
t

Sequential composition is associative. For brevity, we can thus write

●●
N←L

N

to represent the sequential composition of a finite list of networks L.

Parallel composition

Given two networks N and M and a boolean value δ, the parallel composition of

N and M (denoted N ∥δ M) is a network where the input stream is split up into

two streams that are fed into N and M, respectively. More precisely, records on the

input stream are routed to the network with the strongest matching type. If there

are multiple networks with equally strong matching types, a non-deterministic

choice is made among those networks. The individual output streams of N and M
are merged to form the output stream of the new network. The merger is either

deterministic (when δ = T) or non-deterministic (when δ = F).
Non-deterministically merging two streams means that records on those streams

are non-deterministically interleaved. However, when record a appears before

record b in the output stream of N , a also appears before b in the merged output

stream. The non-deterministic merger of the two output streams of N and M does

not preserve the causal order on the stream, since data being processed by N may

well be overtaken by data processed by M or vice versa. The deterministic merger

does preserve the causal order along both substreams.

Parallel composition is also associative. For brevity, we can thus write

∥
δ

N←L

N

to represent the parallel composition of a finite list of networks L.

Serial replication

The serial replication of a networkNmeans, that every record in the output streamof

N may be fed through another copy ofN , until it matches a terminator. A terminator

is a set of patterns (see [37] and, for the structural definition, section B.2). A pattern

consists either of a single record type to be matched or of a record type and a guard
expression. Guard expressions are expressions of tag values. Guard expressions have
a boolean result. A record matches a pattern if it matches the pattern’s record type

and, if the pattern has a guard expression, the pattern’s guard expression evaluates

to true. A record matches a terminator if it matches any of the terminator’s patterns.

Given a network N , a boolean value δ and a terminator γ, N⋆δ ,γ denotes the serial
replication of N , which is itself a siso network. We can interpret γ as a function

thesis April 1, 2010 14:45 Page 96 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

96

6
.3
–
P
u
r
p
o
se

a
n
d
a
p
p
r
o
a
c
h

on records, i.e. γ ∶ R → {recurse, done}, where R denotes the set of all possible

records. Thus, the application of γ to a record a, i.e. γ(a), is the matching of a
against the patterns of γ. If any pattern matches, the result of this function is done,
otherwise, it is recurse.

As before, there are two variants: deterministic (δ = T) and non-deterministic

(δ = F). The deterministic variant preserves the causal order of the input stream in

the overall output stream of the replicated network, whereas the non-deterministic

variant does not (necessarily). The serial replication combinator can be understood

recursively as:

N⋆δ ,γ ≊ (N .. N⋆δ ,γ) ∥
γ
δ Id

where Id is the ‘identity network’ or ‘bypass’: Every record that comes into Id comes

out of Id, unchanged and in-order. The superscript of γ on the parallel combinators

indicates that records are not routed by the strongest match, but by any match

(regardless of strength) of the terminator.

Inspection composition

Given a network N , a boolean value δ and the name of a tag t, the inspection
composition of N inspecting t (denoted N !δ t) is a potentially infinite parallel
composition of N with itself, where incoming records are routed based on the

value of tag t. In other words, for every value of tag t, a separate instance of N
exists to which all records that hold the corresponding tag value are routed. This

composition can be thought of as an equivalent to the switch-/case-statement found

in many programming languages. As before, there are two variants: deterministic

(δ = T) and non-deterministic (δ = F).

6.3 Purpose and approach

The purpose of the denotational semantics of SNet is to allow formal reasoning

about SNet programs and with SNet programs about input streams, independent

of the underlying execution model. An added benefit of a denotational semantics

is that it offers a contract to which execution models must adhere. The approach

taken to come to a denotational semantics of SNet is to offer a translation scheme

from SNet to the functional programming language Haskell [79]. Haskell has a

denotational semantics [2]. Haskell offers awealth of techniques and tools—monads,

arrows, etc.—but for the sake of accessibility, we use only basic constructs. Thus,

the offered translation scheme can be understood in terms of any (pure and lazy)

functional programming language.

Because SNet allows for (explicit) non-determinism, a translation to Haskell must

bound non-determinism. In other words, because a pure functional program is

thesis April 1, 2010 14:45 Page 97 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

97

C
h
a
p
t
e
r
6
–
D
e
n
o
t
a
t
io
n
a
l
se
m
a
n
t
ic
s
o
f
S
N
e
t

fully deterministic, SNet’s non-determinism must be modelled in pure functional

terms. We model non-determinism by an oracle. Any network containing non-

determinism is translated to a function, that takes an oracle as an argument. Effec-

tively, this brings all non-determinism “outside,” i.e. transforming non-deterministic

choices to parameters. By translating networks to pure functions with oracles, using

the translation scheme described in section 6.5, formal reasoning using quantifica-

tion over all possible oracles can be achieved. In section 6.6, this strategy is used to

show that any SNet program is prefix monotonic.

The representation of SNet language elements—combinators, actions, types, etc.—

in Haskell is described in appendix B. All Haskell code in this chapter has been

formatted for brevity and readability. The corresponding string substitutions are

listed in appendix C.

6.4 Data structures and utilities

In this section, we introduce the Haskell data structures and utilities we use in the

translation from SNet networks to Haskell functions (see section 6.5). As utilities,

we identify a few common patterns that occur in the SNet translation and express

them in functions. The proof of SNet’s prefixmonotonicity (see section 6.6) is made

easier this way: When we prove properties of a utility function, those properties

are given for SNet translations expressed in terms of these utility functions.

6.4.1 types and evaluables

A detailed description of the representation of records, networks and types is

given in section B.1. A few elements of that description are of importance for the

understanding of this chapter. Therefore, we summarize them here.

Records (R) have a record type (R) and networks (N) have a network type (N).

For both records and networks, a function is provided to derive the corresponding

type. The matching strength of a record against a network type can be determined

with the function match.

typeOf ∶∶ R → R
netType ∶∶ N → N
match ∶∶ R → N → Z

For flow inheritence, we define an inheritence structure (I) as having a through
and an around part.

data I ≙ I { through , around ∶∶ R }

We define two operators for flow inheritence: The separation operator (�) and the

fusion operator (�). The separation operator takes as operands type t and record r

thesis April 1, 2010 14:45 Page 98 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

98

6
.4
.2
–
S
t
r
e
a
m
s

and separates r into an inheritance structure, where the through-part has type t
(precisely t, i.e. not a subtype) and the around-part has everything in r that is not
in the through-part. Network types are inferred from the types of the primitive

networks of which they consist [37]. The types of these primitive networks are more

specialized than network types. Boxes have box types (B) and filters have simple

network types (F), i.e. network types with only one input variant. The separation

operator is defined in the class Inheritable, of which box types, simple network

types and record types are all instances. The fusion operator takes as operands an

inheritance structure and a record and produces a record. It merges the around-part

of the inheritance structure with the record, such that if they contain fields or tags

with the same name, the values in the record are preserved and the values in the

inheritance structure are discarded.

For example, let record r be input for a box with type t. Inheritance structure i is
defined as i = t � r. The box is applied to the through-part of i, resulting in the

(multiplicitous) result r′1 , r′2. The around-part of i is combined with the result by

applying the fusion operator to i and both records, i.e. i � r′1 , i � r′2.
(�) ∶∶ Inheritable t ⇒ t → R → I
(�) ∶∶ I → R → R

SNet also includes a few ‘evaluable’ language constructs. Filters consist of filter

actions (A) and both serial replication combinators and synchrocells are defined

using patterns (P). Both actions and patterns consist of expressions (E). All of

these constructs can be evaluated, given a record as context, by the function eval.

eval ∶∶ Evaluable a ⇒ R → a t → t

If a pattern matches the context record, it evaluates to a record type. When an

action is evaluated with the context record, it results in a list of records. For the

precise definition of these language constructs, see section B.2.

6.4.2 streams

Intuitively, a stream is a list of records. However, this leads to a problem with

observability. Consider, for example, the deterministic parallel composition of the

networks N and M, i.e. N ∥T M. Let the input stream of this network inN ∥
T
M be

given as

inN ∥
T
M = a, b, c, . . .

That is, a, b and c are the first three records of the input stream. Furthermore, let

the record types of a and c match the network type of N and not that ofM, whereas

the record type of b matches the network type of M and not that of N . Thus, the

individual input streams of the networks N and M are

inN = a, c, . . .
inM = b, . . .

thesis April 1, 2010 14:45 Page 99 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

99

C
h
a
p
t
e
r
6
–
D
e
n
o
t
a
t
io
n
a
l
se
m
a
n
t
ic
s
o
f
S
N
e
t

The problem of observability becomes apparent when looking at the output streams:

outN = n, n′ , . . .
outM = m,m′ ,m′′ , . . .

It is unclear how these streams must be merged to form outN ∥
T
M . The preservation

of causal order dictates that the responses to b succeed responses to a and precede

responses to c. However, the correspondence between records on the output streams

of N and M to those on the respective input streams is lost: Because of multiplicity,

we can not assume that n is a response to a and n′ is a response to c.

To solve this problem, we introduce delimiters in the stream. A delimiter is trans-

parent to primitive networks, since primitive networks operate on records, one at a

time and in-order. For all networks, we say that if there are k delimiters between

records a and b on a network’s input stream, there are k delimiters between the

responses to a and b on the network’s output stream. To illustrate, we revisit the

example above. Let ◻ denote a delimiter in the stream. We introduce delimiters

between every record when splitting the stream and feed the resulting streams into

the respective networks, i.e.

inN ∥
T
M = a, b, c, . . .

inN = a ◻ c ◻ . . .

inM = b ◻ . . .

outN = n, n′ ◻ ◻ . . .

outM = m,m′ ,m′′ ◻ . . .

In this example, the response to a are the records n and n′, the response to c is
empty and the response to b are the records m through m′′ (recall that primitive

networks can be multiplicitous). The correspondence is now observable, so the

merger is:

outN ∥
T
M = n, n′ ,m,m′ ,m′′ , . . .

The records between two consecutive delimiters are referred to in the remainder of

this chapter as a substream. Substreams can, as illustrated above, contain zero or

more records. We represent a substream by a list of records:

type s ≙ [R]

A stream is now represented by a list of substreams:

type S ≙ [s]

Because the intuition of functions on a stream is that of applying a function on

consecutively arriving records (without any other structural information), we in-

troduce a few higher order functions for streams. We want to allow functions

that have some sort of state (as we will see for functions that take an oracle, or for

thesis April 1, 2010 14:45 Page 100 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

100

6
.4
.3
–
M
a
k
in
g
e
v
e
r
y
t
h
in
g
d
e
t
e
r
m
in
ist

ic
:
o
r
a
c
l
e
s

sychrocells) and that are multiplicitous. Thus, a function of a state and a record is

to be ‘folded’ over a stream. The result of the function is the modified state and

the (multiplicitous) response. Since we want to model infinite streams, the folding

function does not require an externally observable state. We define foldS as a fold
over streams for non-multiplicitous functions and, similarly, we define foldSM for
multiplicitous functions. The types for these fold-functions are kept general, so
that we can also use it for other stream-like data structures (if not, a and b in the

following description would both beR).

foldS ∶∶ (s → a → (s ,b)) → s → [[a]] → [[b]]
foldS _ _ [] ≙ []

foldS f s (σ:σ s) ≙ τ : foldS f s’ σ s
where
(s’ , τ) ≙ foldss f s σ

foldss ∶∶ (s → a → (s , b)) → s → [a] → (s , [b])
foldss f s [] ≙ (s , [])

foldss f s (r:σ) ≙ (s’’ ,r’:τ)
where
(s’ ,r’) ≙ f s r
(s’’ , τ) ≙ foldss f s’ σ

foldSM ∶∶ (s → a → (s , [b])) → s → [[a]] → [[b]]
foldSM f s ≙ map concat ○ foldS f s

Similarly, mapping stateless functions on streams can be defined with the functions

mapS and mapSM. Both are specified as a special foldS (resp. foldSM) case, where an
unchanging unit-type state is added to the function. The effect is, that the function

argument of mapS (and mapSM) is applied to all records in a stream with no data

passing between separate function applications. The same holds for the stream

equivalent of filter: filterS.

mapS ∶∶ (a → b) → [[a]] → [[b]]
mapS f ≙ foldS (λ () r → (() ,f r)) ()

mapSM ∶∶ (a → [b]) → [[a]] → [[b]]
mapSM f ≙ foldSM (λ () r → (() ,f r)) ()

filterS ∶∶ (a → Bool) → [[a]] → [[a]]
filterS p ≙ foldSM (λ () r → (() ,if p r then [r] else [])) ()

6.4.3 making everything deterministic: oracles

The idea behind the presented formulation of the semantics of SNet is that non-

determinism can be expressed as a deterministic choicemade outside of the network.

Since there are many places in a network where such choices apply, we annotate

every choicewith a network index, to indicate towhich part of the network the choice

thesis April 1, 2010 14:45 Page 101 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

101

C
h
a
p
t
e
r
6
–
D
e
n
o
t
a
t
io
n
a
l
se
m
a
n
t
ic
s
o
f
S
N
e
t

route deinterleave apply merge

S S̃ S[S] [S]

[[N]]split

Figure 6.2 – Split-merge pattern

applies. The structural definition of network indices is discussed in section B.3. The

oracle for a network is represented by that network’s index and the list of annotated

choices, where choices are represented by natural numbers.

type Ω ≙ (Ψ, [(Ψ,N)])

When non-deterministic choices are made by a network, the network queries its

oracle and only looks at the choices that apply to it. Thus, we define:

query ∶∶ Ω → [N]
query (ψ ,os) ≙ map snd (filter ((ψ =) ○ fst) os)

The oracle should be thought of simply as a list of choices. To emphasize this

perspective, we introduce a restriction operator (↾). The restriction operator takes

as its operands an oracle and a network index element (see section B.3). From the

network indicated by the network index in the oracle, the oracle is restricted to

those networks that can be reached from the network indexed by the network index

append with the network index element. Since network indices are partially ordered

and networks that can be reached from a point indicated by a network index have a

larger network index, we can determine reachability using the infimum (inf) of
network indices (as defined in section B.3).

(↾) ∶∶ Ω → NetIdxEl → Ω

(ψ ,cs)↾i ≙ (ψ’ ,cs’)
where
ψ’ ≙ ψ ⊕ i
cs’ ≙ filter ((ψ’ =) ○ inf ψ’ ○ fst) cs

6.4.4 a common pattern for combinators: split-merge

There is a basic pattern to the splitting andmerging of streams. Because all networks

have one input stream and one output stream, streams are split to feed records into

different networks. These networks are referred to as branches in the context of

splitting and merging. When we represent a branch as a function from stream to

stream, we can say that we apply the branch to its stream. The ‘split-merge pattern’

thesis April 1, 2010 14:45 Page 102 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

102

6
.4
.4
–
A
c
o
m
m
o
n
pa
t
t
e
r
n
f
o
r
c
o
m
b
in
a
t
o
r
s:
sp
l
it
-m

e
r
g
e

is illustrated in figure 6.2. What is illustrated in the figure is not an SNet network,

but a visualization of how the functions of the split-merge pattern relate.

Incoming streams must be routed, resulting in a ‘routed stream’. In a routed stream

all records are annotated with the number of the branch they must flow into:

type S̃ ≙ [[(N,R)]]

The routed stream is then deinterleaved according to the routing annotation. What

is referred to as a ‘split’ or ‘splitter’ in SNet terminology is the combination of the

route and deinterleave functions in the figure. Splitting results in a list of infinitely
many streams (required to describe the inspection combinator, as discussed in

section 6.5). The branches are applied to their respective streams. If there are a finite

number of branches, the result is a finite list of branch output streams, i.e. when

there is no corresponding branch for a stream coming out of the split, that stream is

discarded. Finally, the streams are merged back into a single stream. Choices made

with regards to routing are important, so the merger gets these choices as an input.

The choices are extracted from the routed stream by:

routes ∶∶ S̃ → [[N]]
routes ≙ mapS fst

The (non-)determinism of the split-merge pattern is two-fold. On the one hand,

splitting is non-deterministic when there are multiple branches into which a record

can flow and, on the other hand, the merge-order maybe non-deterministic. Split-

ting non-determinism is decided in routing, i.e. it is clear for every record in the

routed stream into which branch it should flow. Merging non-determinism has

implications for both the splitter and the merger. For example, in a determin-

istic parallel composition, every single record flowing into a branch is its own

substream (recall the example given in section 6.4.2). In the alternative case, the

non-deterministic parallel composition, all branches receive all substreams that

arrived at the splitter, but per substream only those records that are routed there.

We illustrate non-deterministic split-merge with a variation of the example in

section 6.4.2. We assume that the parallel composition of networks N and M is

non-deterministic. Also, we add to the input stream a delimiter, a record d and

another delimiter. The responses of network N and M are the same as above (with

the addition of the response to d: the single record n′′).

inN ∥
F
M = a, b, c ◻ d ◻ . . .

inN = a, c ◻ d ◻ . . .

inM = b ◻ ◻ . . .

outN = n, n′ ◻ n′′ ◻ . . .

outM = m,m′ ,m′′ ◻ ◻ . . .

The non-deterministic split-merge does not introduce delimiters between every

record, because the merger may arbitrarily interleave outN and outM . However,

thesis April 1, 2010 14:45 Page 103 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

103

C
h
a
p
t
e
r
6
–
D
e
n
o
t
a
t
io
n
a
l
se
m
a
n
t
ic
s
o
f
S
N
e
t

delimiters in inN ∥
F
M must be honoured by the merger. The output stream of the

merger, therefore, is

outN ∥
F
M =

n, n′

m,m′ ,m′′
◻ n′′ ◻ . . .

where the notation before the first delimiter indicates an arbitrary interleaving of

n, n′ and m,m′ ,m′′.

We first give the types of the functions implementing the split-merge pattern, start-

ing with the function for the entire pattern splitMerge.

splitMerge ∶∶ Bool → Router → [Branch] → Ω → S → S

It requires a router function that, as described above, may make non-deterministic

choices. Therefore, the router function takes as an extra argument an oracle. Since

branches may have their own internal non-determinism, they also require an oracle

besides their branch number and their input stream. With its branch number, a

branch can restrict its own oracle.

type Router ≙ Ω → S → S̃
type Branch ≙ N → Ω → S → S

Both the deinterleaver and the merger need to be informed on whether this is a

deterministic split-merge pattern. Only the merger requires an oracle.

deinterleaveS ∶∶ Bool → S̃ → [S]
mergeS ∶∶ Bool → [[N]] → Ω → [S] → S

The router and merger are applied to an oracle that is restricted to their respective

network index elements (Split and Merge as described in section B.3). As described
above, the branches receive as an argument their branch number, an oracle and

their respective stream.

splitMerge δ routeS branches ω s ≙ let
routed ≙ routeS (ω↾Split) s
splits ≙ deinterleaveS δ routed
applyS ≙ λb i s → b i ω s
result ≙ zipWith3 applyS branches [0..] splits

in mergeS δ (routes routed) (ω↾Merge) result

Deinterleaving

As discussed above, deinterleaving depends on whether or not the split-merge is

deterministic. If the split-merge is non-deterministic, deinterleaving introduces

no new substream divisions, i.e. delimiters. Instead, every branch receives every

substream, but filters out the records routed to other branches. If the split-merge is

deterministic, every record is mapped to a singleton substream and branches are

fed only the substreams that contain a record that is routed to that branch.

thesis April 1, 2010 14:45 Page 104 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

104

6
.4
.4
–
A
c
o
m
m
o
n
pa
t
t
e
r
n
f
o
r
c
o
m
b
in
a
t
o
r
s:
sp
l
it
-m

e
r
g
e

[S] [[s]] [[s]]

[[N]]

6

2
34

trans-
pose limit

nInter-
leave

maximi [N]

X

X
XX

Figure 6.3 – Non-deterministic merger

deinterleaveS δ rs ≙ [delims (filterS ((=i).fst) rs) ∣ i ← [0..]]
where
delims ∶∶ S̃ → S
delims ∣ ¬ δ ≙ mapS snd

∣ δ ≙ concat ○ mapS ((:[]) ○ snd)

Merging

Again, merging comes in two variants: deterministic and non-deterministic. Both

are described below, but first we introduce a helper function that is used by both

variants ofmerger: The function applyAt applies a function to precisely one element

of a list, indicated by the element’s index in that list.

applyAt ∶∶ (a → a) → N → [a] → [a]
applyAt f 0 (x:xs) ≙ f x : xs
applyAt f n (x:xs) ≙ x : applyAt f (n-1) xs

Merging the split streams deterministically requires only an interleaving of the

substreams produced by the branches, according to the routing information. By

foldSMing dInterleave over the routing choices with the streams to be merged as

its state, the result is the merged stream.

dInterleave ∶∶ [S] → N → ([S] , s)
dInterleave σ ss c ≙ (applyAt tail c σ ss , head (σ ss ! !c))

A non-deterministic merger merges all incoming substreams into a single sub-

stream. The structure of non-deterministic mergers is illustrated in figure 6.3. The

(potentially infinite) list of incoming streams is transposed, resulting in (potentially

infinite) lists of substreams. The decisions made in the router are used to limit the

length of these substreams: For every substream, the maximum branch number

indicates the highest numbered stream that contains a non-empty substream. After

thesis April 1, 2010 14:45 Page 105 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

105

C
h
a
p
t
e
r
6
–
D
e
n
o
t
a
t
io
n
a
l
se
m
a
n
t
ic
s
o
f
S
N
e
t

limiting, the list of finite lists of substreams are interleaved per list into a single

substream.

Transposition and limiting are both deterministic.

transpose ∶∶ [S] → [[Maybe s]]
transpose mx ≙ map head’ mx : transpose (map tail mx)

where
head’ [] ≙ Nothing
head’ (x:xs) ≙ Just x

limit ∶∶ [[N]] → [[Maybe s]] → [[s]]
limit choices ≙ map (map fromJust) ○ takeWhile (all isJust) ○

zipWith take (map maximum choices)

nInterleave is non-deterministic. It requires as an argument the list of choices

dictated by the merger’s oracle. The input is a list of lists of substreams. Every

list of substreams can have a different length (determined by limiting). When all

substreams in the ‘current’ list (subs) are empty, the end of the resulting substream

is reached and nInterleave continues with the next substream. If ever the oracle

decision points to an empty substream, the result is the end of the entire stream.

This is required behaviour to attain the property of prefix monotonicity, discussed

in section 6.6.

nInterleave ∶∶ [N] → [[s]] → S
nInterleave _ [] ≙ []
nInterleave cs (subs:subss) ∣ all null subs ≙ nInterleave cs subss
nInterleave (c:cs) (subs:subss)

∣ null sub ≙ [[]]

∣ otherwise ≙ applyAt (head sub :) 0 subss’
where
sub ≙ subs! !c
subss’ ≙ nInterleave cs (applyAt tail c subs : subss)

Now both types of merger can be combined in mergeS. At the top-level, the choice is
made for deterministic or non-deterministic merger. If the merger is deterministic,

as discussed above, we foldS the dInterleave function over the router choices. If

the merger is non-deterministic, first, the incoming list of streams is transposed and

limited (subss). The oracle is queried to provide all the choices for the nInterleave
function.

mergeS δ choices ω σ ss ∣ δ ≙ foldSM dInterleave σ ss choices
∣ ¬ δ ≙ nInterleave (query ω) subss

where
subss ≙ limit choices (transpose σ ss)

thesis April 1, 2010 14:45 Page 106 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

106

6
.4
.5
–
S
y
n
c
h
r
o
n
isa

t
io
n

6.4.5 synchronisation

Whereas merging combines streams, synchronisation combines records. Synchro-

nisation occurs in synchrocells. Synchrocells carry with them a list of patterns to

match (pats). There is flow inheritance for synchrocells: The record to match the

first pattern in pats is flow inherited over the synchrocell when the synchrocell

produces a result. For records that only match one or more of the other patterns in

pats, the matching fields are stored and the unmatched fields are discarded. First,

we describe the state of synchrocells.

Given a list of patterns, the state of a synchrocell can be initialised. Every pattern is

translated into a matching function, which takes a record and tries to match it to

the pattern. If a match succeeds, the result of matching is a record type. The record

is split into an inheritance structure, containing a through and an around part. The

state of a synchrocell is a list of either matching functions, that have not (yet) been

matched, or inheritance structures resulting from successful earlier matches.

type SyncState ≙ [Either (R → Maybe I) I]

syncInit ∶∶ [P (Maybe R)] → SyncState
syncInit pats ≙ map (Left ○ λp r → fmap (� r) (eval r p)) pats

Next, we describe the transformation of a synchrocell’s state (syncS). There are

three conditions for the state to which syncS shows different behaviour. When the

state is an empty list, this indicates the synchrocell has already produced a result in

response to a record to which the synchrocell was applied before. When the state is

a non-empty list, there are two possiblities: Either the incoming record matches all

remaining patterns, leaving nothing left todo, but to produce a result or there are
unmatched patterns after the incoming record has been absorbed and no result is

produced. If a result is produced, it consists of the combination of all (through
parts of) records stored earlier, with the fields that flow inherit from the record that

matched the first pattern in pats.

syncS ∶∶ SyncState blv → R → (SyncState blv , [R])
syncS [] r ≙ ([] , [r])
syncS state r ∣ null todo ≙ ([] , [result])

∣ otherwise ≙ (state’ , [])
where
(todo ,done) ≙ partitionEithers state’
state’ ≙ map (either (λp → maybe (Left p) Right (p r)) Right) state
result ≙ head done � foldl1 combine (map through done)

6.5 Semantics

Using the data structures and utilities described above, the semantics of a network

can be written as a function of that network and its index. In other words, the

thesis April 1, 2010 14:45 Page 107 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

107

C
h
a
p
t
e
r
6
–
D
e
n
o
t
a
t
io
n
a
l
se
m
a
n
t
ic
s
o
f
S
N
e
t

function J.K describes unambiguously the behaviour of any network. The behaviour

is again a function that takes an oracle and a stream and produces a stream.

J.K ∶∶ N → Ω → S → S

In the following sections, we give a definition for J.K for every primitive network

and every network combinator.

6.5.1 primitive networks

In this section, we define the semantics of primitive networks and use these defini-

tions for the semantics of network combinators in the following sections. We start

with boxes. Boxes have no non-determinism, so the oracle is not needed for any

box. However, flow inheritance occurs on boxes. Records flowing into a box are

split according to the box type b. The result is an inheritance structure (inh). This

inheritance structure contains two parts: through and around. The through part
is fed into the box and the around part is merged with all records coming out of

the box. To feed the through part of the record (which is itself a record), it must be

converted into box input (toBox). The boxmay bemultiplicitous, i.e. the box’ output

can consist of multiple records. All of the box’ output must be converted back to

records (fromBox) and the around part is flow inherited over the box (inh �).

Jbox(b, f)K≙ λ_ s → mapSM applyBox s
where
applyBox r ≙ let inh ≙ b � r in
(map ((inh �) ○ fromBox b) ○ f ○ toBox b ○ through) inh

The semantics of filters is (intuitively) the same as that of boxes, besides the conver-

sions of records to box input and box output to records. Filters are defined by a list

of actions A that can be evaluated for every incoming record.

Jfilter(f,A)K ≙ λ_ s → mapSM applyFilter s
where
applyFilter r ≙ let inh ≙ f � r in map (inh �) (eval (through inh) A)

Synchrocells are primitive networks with a state. The initial state comes from the

synchrocell’s description, i.e. patterns given in P . The behaviour of a sychrocell is

defined per record, given the propagation of a state. This behaviour is implemented

in the function syncS described above.

Jsync(P)K ≙ λ_ s → foldSM syncS (syncInit P) s

6.5.2 sequential composition

Sequential composition of networks is akin to function composition.

thesis April 1, 2010 14:45 Page 108 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

108

6
.5
.3
–
P
a
r
a
l
l
e
l
c
o
m
p
o
sit

io
n

r
●●
N←L

N
z
≙ λω s → let

L’ ≙ zipWith (λ N i → JNK (ω↾Seq i)) L [0..]
in (foldr1 (○) L’) s

6.5.3 parallel composition

Parallel composition adheres to the split-merge pattern (see section 6.4.4). Branch

numbers are encoded in the index as alternatives (Alt). Routing is based on the

strongest matching network type of the branches and is implemented in routing

function router. When records match multiple branches’ network types equally

well, the oracle is queried to choose from those branches with the strongestmatching

network types.
t
∥
δ

N←L

N
|

≙ splitMerge δ (router ○ query) (map branch L)

where
types ≙ map netType L
branch N i ω ≙ JNK (ω↾Alt i)
router ≙ foldS route

where
route ∶∶ [N] → R → ([N] , (N, R))
route cs r ≙ (cs’ , (options! !c ,r))

where
matches ≙ map (match r) types
hiscore ≙ maximum matches
alts ≙ zip matches [0..]
options ≙ [c ∣ (m ,c) ← alts , m = hiscore]
(c:cs’) ∣ null (tail options) ≙ (0:cs)

∣ otherwise ≙ cs

6.5.4 serial replication

The serial replication has terminator patterns (γ). If any of those patterns match

the incoming record, that record bypasses all following instance of the replicated

network. If no patterns match the incoming record, the record is passed through

another instance of the replication. This means the serial replication fits the split-

merge pattern (see section 6.4.4). The router (stop) decides where to route a record,
based on whether or not it matches the terminator patterns. The intuition for the

serial replication is that of recursion or iteration. However, because we want to use

Haskell’s denotational semantics, we may not make the rewriting of SNet programs

an infinite process: Only finite Haskell programs have well-defined semantics.

Therefore, the semantics may not be recursive in itself. Instead, we define net i to
represent the i th unrolling of the serial replication’s body. The function net is given
a branch number as its second argument, because of the definition of splitMerge.

thesis April 1, 2010 14:45 Page 109 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

109

C
h
a
p
t
e
r
6
–
D
e
n
o
t
a
t
io
n
a
l
se
m
a
n
t
ic
s
o
f
S
N
e
t

This branch number serves no purpose in disambiguating instances (which is what

argument i is for). Therefore, the branch number is ignored.
q
N⋆

δ ,γ
y
≙ net 0 0

where
net i _ ω ≙ splitMerge δ xt [net (i+1) , λ_ _ → id] ω ○ JNK (ω↾Iter i)
xt _ ≙ mapS (λr → (if done r then 1 else 0 ,r))

where
done r ≙ any (maybe False (const True)) (map (eval r) γ)

6.5.5 inspection composition

The inspection combinator also adheres to the split-merge pattern (see section 6.4.4).

The splitter, in this case, is fully deterministic: The value of tag sel is used as the

branch number to which to route. Because the value of tag sel can be arbitrarily

large, theremay be arbitrarily many branches. This is the reason why the split-merge

pattern assumes infinitely many branches and why non-deterministic mergers must

allow a different number of branches to merge for every substream.

JN !δ tK≙ splitMerge δ router (repeat branch)
where
router _ ≙ mapS (λr → (route r , r))
route r ≙ let z ≙ eval r (EL sel) in 2 ∗ abs z + div (signum z - 1) 2
branch i ω ≙ JNK (ω↾Alt i)

The function J.K is a total function from all primitive networks and network combi-

nators to Haskell functions from an oracle and a stream to a stream. These streams

consist of substreams (as described in section 6.4.2). However, the intuitive inter-

pretation of a stream is a list of records. Therefore, we want an entry-point into

the semantics that adds this structural information (substreams) to the input and

removes it from the output. Substreams arise from deterministic split-merge in-

stances. Thus, for a stream from the ‘outside world’ we can say that the entire stream

is precisely one substream. Moreover, under the restriction that all networks must

preserve delimiters, the result is a stream with precisely one substream. This leads

to:

J.K ∶∶ N → [(Ψ,N)] → [R] → [R]
JNK ω ≙ head ○ JNK ([] ,ω) ○ (:[])

6.6 Prefix monotonicity

With the semantics presented in the previous section, we can prove that every

SNet network is prefix monotonic. We first define two relations that express prefix

monotonicity.

thesis April 1, 2010 14:45 Page 110 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

110

6
.6
–
P
r
e
f
ix

m
o
n
o
t
o
n
ic
it
y

Definition.(List prefix) The list prefix relation, denoted by xs ⊑ ys for prefix xs of
ys, is defined as

x ∶ xs ⊑ y ∶ ys iff x = y ∧ xs ⊑ ys
[] ⊑ ys

Definition.(Nested-list prefix) The nested-list prefix relation, denoted by xss ⊴ yss
for prefix xss of yss, is defined as

xs ∶ xss ⊴ ys ∶ yss iff (xs = ys ∧ xss ⊴ yss) ∨ (xs ⊑ ys ∧ xss = [])
[] ⊴ yss

With these definitions, we can express what we mean by saying that every SNet

network is prefix monotonic: Let N denote an arbitrary SNet network, rs a list of
records and s the state of the network, then

rs′ ⊑ rs ⇒ ∀ω (JNKs ω rs′ ⊑ JNKs ω rs)

The state in the denotational semantics given in the previous section is not externally

observable, but the intuition is that s is the collection of all states at all hierarchical

levels in N .

The overall structure of the proof is by two-level induction. On the top-level we

proceed by induction on the structure of the network N . Then we proceed by

induction on the length of the prefix rs′ of rs. The basic case is rs′ = [], i.e. we prove
that

JNKs ω [] ⊑ JNK ω rs

For the induction case we may assume the induction hypothesis, i.e. for all s we
have that

JNKs ω rs′ ⊑ JNKs ω rs

and have to prove for all s:

JNKs ω (r ∶ rs
′) ⊑ JNKs ω (r ∶ rs)

The reason for emphasising “for all s” above, is that the effect of r may be that the

state s in the network changes. Thus, in order to apply the induction hypothesis,

it should hold for any state that may be the result of processing r by N . Clearly, it

should be possible that r is executed in any state s as well.

It follows from the definitions of J.K and ⊑, that

JNKs ω rs′ ⊑ JNKs ω rs ⇔ JNKs ω [rs′] ⊴ JNKs ω [rs]

Weuse this property for the induction over the structure ofN . Also, in the following,

σ denotes a substream and σs denotes a stream. Thus σ ∶ σs denotes a stream with

thesis April 1, 2010 14:45 Page 111 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

111

C
h
a
p
t
e
r
6
–
D
e
n
o
t
a
t
io
n
a
l
se
m
a
n
t
ic
s
o
f
S
N
e
t

at least one substream. Using the right-hand-side of the expression above, however,

means that there are two induction case: In the first, we add a substream to the

stream, whereas in the second, we add a record to the first substream. This means

we have three cases to prove for the induction case:

C1 ∶ σs′ ⊴ σs ⇒ σ ∶ σs′ ⊴ σ ∶ σs
C2 ∶ σ ′ ∶ σs′ ⊴ σ ∶ σs ⇒ σ ′ = σ ∧ σs′ ⊴ σs
C3 ∶ σ ′ ∶ σs′ ⊴ σ ∶ σs ⇒ σ ′ ⊑ σ ∧ σs′ = []

6.6.1 proof for SNet networks

Because the semantics of SNet networks is defined in terms of a few utility functions,

we first prove that these functions are prefix monotonic.

Lemma 1 (foldss) σ ′ ⊑ σ ⇒ ∀ f , s (snd (foldss f s σ ′) ⊑ snd (foldss f s σ))
Proof: By induction with base case σ ′ = [], trivial. For the induction case, let

(s′ , r′) = f s r

and let

(s1 , σ1) = foldss f s σ ′

(s2 , σ2) = foldss f s σ

Thus

foldss f s (r ∶ σ ′) = (s1 , r′ ∶ σ1)
foldss f s (r ∶ σ) = (s2 , r′ ∶ σ2)

Induction hypothesis:

σ1 ⊑ σ2
Hence, taking the snd on both sides gives

r′ ∶ σ1 ⊑ r′ ∶ σ2

◻
Lemma 2 (foldS) σs′ ⊴ σs ⇒ ∀ f , s (foldS f s σs′ ⊴ foldS f s σs)
Proof: By induction with base case σs′ = [], trivial. For the induction case C1, i.e.

∀ f , s(foldS f s σs′ ⊴ foldS f s σs)
⇒ ∀ f , s(foldS f s (σ ∶ σs′) ⊴ foldS f s (σ ∶ σs))

trivial. For induction case C2, let

(s′ , τ′) = foldss f s (r ∶ τ)

thesis April 1, 2010 14:45 Page 112 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

112

6
.6
.1
–
P
r
o
o
f
f
o
r
S
N
e
t
n
e
t
w
o
r
k
s

and let

τs′ = foldS f s′ σs′

τs = foldS f s′ σs

then

foldS f s ((r ∶ τ) ∶ σs′) = τ ∶ τs′

foldS f s ((r ∶ τ) ∶ σs) = τ ∶ τs

Proof follows from the induction hypothesis:

τs′ ⊑ τs

For induction case C3 let

(s1 , τ1) = foldss f s (r ∶ σ ′)
(s2 , τ2) = foldss f s (r ∶ σ)

hence (by lemma 1)

τ1 ⊑ τ2
Thus

τ1 ∶ [] ⊴ τ2 ∶ τs
◻

Lemma 3 (foldSM) σs′ ⊴ σs ⇒ ∀ f , s (foldSM f s σs′ ⊴ foldSM f s σs)
Proof: With lemma 2, it is easy to see that

σs′ ⊴ σs ⇒ ∀ f , s (map concat (foldS f s σs′) ⊴ map concat (foldS f s σs))

◻
Lemma 4 σs′ ⊴ σs ⇒ ∀ f , s

mapS f s σs′ ⊴ mapS f s σs
mapSM f s σs′ ⊴ mapSM f s σs
filterS f s σs′ ⊴ filterS f s σs

Proof: Immediate from lemmas 2 and 3 ◻
Lemma 5 (splitMerge) σs′ ⊴ σs ⇒ ∀ f , s

splitMerge F R bs ω σs′ ⊴ splitMerge F R bs ω σs

Proof: Examine the non-deterministic case, i.e. δ = F. The incoming stream is split,

such that for every substream σ , there is a (possibly empty) substream σi in the

thesis April 1, 2010 14:45 Page 113 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

113

C
h
a
p
t
e
r
6
–
D
e
n
o
t
a
t
io
n
a
l
se
m
a
n
t
ic
s
o
f
S
N
e
t

input stream of branch b i ∈ bs. Every record in σ occurs in precisely on σi . From
the definition, it follows that

splitMerge F R bs ω σs′

= mergeS F css ω [b i σs′i ∣ i ← [0, . . .]]
= mergeS F css ω [τs′i ∣ i ← [0, . . .]]

We go on to show that

∀i(τs′i ⊴ τs i) ⇒ ∀css,ω
mergeS F css ω [τs′i ∣ i ← [0, . . .]] ⊴ mergeS F css ω [τs i ∣ i ← [0, . . .]]

For induction case C1:

mergeS F cs ∶ css ω [τ i ∶ τs′i ∣ i ← [0, . . .]]
= nInterleave (query ω)

(limit (cs ∶ css) (transpose [τ i ∶ τs′i ∣ i ← [0, . . .]]))

= nInterleave (query ω) (

ρ
³¹¹¹·¹¹µ
[τ i ∣ i ← [0, . . . ,maximum cs]]

∶ limit css (transpose [τs′i ∣ i ← [0, . . .]]))

If nInterleave fails to interleave the full substream ρ, the result is [ρ′]. On the other

hand, if nInterleave succeeds, there exists an oracle ω′, such that the result is

nInterleave (query ω) ρ ∶ mergeS F css ω′ [τs′i ∣ i ← [0, . . .]]

It follows that

∀i ,css,ω(b i σs′i ⊴ b i σs i ⇒
mergeS F css ω [b i σs′i ∣ i ← [0, . . .]] ⊴ mergeS F css ω [b i σs i ∣ i ← [0, . . .]])

The proof of the other induction cases is tedious, but straightforward and similar to

the previous proofs. The same holds for the deterministic case of splitMerge. ◻
Lemma 6 (function composition)

σs′ ⊴ σs → f (σs′) ⊴ f (σs) ∧ g(σs′) ⊴ g(σs)
⇒ σs′ ⊴ σs → (f ○ g)(σs′) ⊴ (f ○ g)(σs)

Proof: Let

τs = g(σs)
τs′ = g(σs′)

it follows that

τs′ ⊴ τs

thesis April 1, 2010 14:45 Page 114 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

114

6
.7
–
C
o
n
c
l
u
sio

n

and

f (τs′) ⊴ f (τs)
◻

Theorem.(Prefix monotonicity of N)

∀ω (σs′ ⊴ σs ⇒ JNKs ω σs′ ⊴ JNKs ω σs′)

Proof: By induction over the structure of N . For every clause of J.K:

» Jbox(b, f)K, Jfilter(f,A)K, Jsync(P)K: Immediate from lemmas 3 and 4.

»
r
●●
N←L

N
z
: Immediate from the induction hypothesis and lemma 6.

»

t
∥
δ

N←L

N
|

: Immediate from the induction hypothesis and lemma 5.

»
q
N⋆

δ ,γ
y
: Immediate from the induction hypothesis and lemmas 5 and 6.

» JN !δ tK: Immediate from the induction hypothesis and lemmas 5.

◻

6.7 Conclusion

In this chapter, we have given a denotational semantics of the language SNet by

giving a translation from SNet to the pure, lazy, functional programming language

Haskell. In this translation, non-determinism in SNet has been translated to

choices represented by an oracle. Given an oracle, the behaviour of a translated

SNet network is purely functional, i.e. fully deterministic. Using the presented

denotational semantics, a proof has been provided that, for every oracle, every

SNet network is prefix monotonic.

thesis April 1, 2010 14:45 Page 115 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Ch
ap

te
r7

Hydra: an SNet implementation

Abstract – Two problems are identified in the current execution model of
SNet. A new execution model for SNet is developed in this chapter. This
new execution model is implemented in Hydra, a combination of a compiler
and run-time system. A strong indication is given at the end of this chapter,
that Hydra does not introduce non-termination.

7.1 Motivation

This chapter discusses Hydra, an SNet implementation with a different execution

model than the one implemented in the current SNet-compiler, snetc [76, 86].

The snetc execution model takes an intuitive approach to threading: primitive

networks are threads. Every primitive network has an input buffer into which

records can be written. When there is a record in a thread’s input buffer, that thread

can consume it, perform the operations specified by the corresponding primitive

network and produce output in the input buffers of the threads handling primitive

networks to which the records flow next. Thus, the perspective of an SNet network

is that of a network of communicating processes. Typically, snetc compiles for

shared memory architectures, but more recent work [36, 38] describes distributed

memory approaches.

Parts of an earlier revision of this chapter have been published in [PhH:9].

thesis April 1, 2010 14:45 Page 116 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

116

7
.2
–
A
p
p
r
o
a
c
h

Hydra seeks to solve two problems with the snetc execution model. The first

problem is the resource management. Consider, as an example, the network N .. M,

where N and M are both boxes. Two threads are instantiated for this network,

tN and tM , respectively. If N imposes a heavy computational load, while M is a

very light-weight computation, tN will be constantly busy, while tM is idle most of

the time. Utilization can be improved at run-time, by observing the input buffers.

When a resource manager finds that tN ’s buffer is full most of the time, while that

of tM is (close to) empty, it is clear that tN is a bottleneck. The network can be

dynamically reconfigured to N ∥T N .. M, so that a new thread t′N can be started

and the throughput of N improves. This solution does not scale well to distributed

memory architectures, because it requires resource management to observe input

buffers across a distributed system. Although a strategy may be used to promote

locality of communicating threads, for networks in which loads are data dependent

and highly variable, fragmentation is inevitable.

Another instance of the same problem is that of reclaiming resources. Consider

the network (sync ({A}, {B}) .. N ∥T Id)⋆
{X},γ , where N is a network that takes

records of type {A, B} and produces records of type {X}. The synchrocell combines

records of type {A} with records of type {B} to form records of type {A, B}. After
the first, all other records of type {A} bypass network N (by flowing through the

identity network Id), do not match the exit pattern {X} and flow into the next

instance of the serial replication. The same holds for records of type {B}. This

means only the first records of either type uses the first instance of N , while all

following records bypass it and flow into consecutive instances. As this network

is specified to have two input variants, {A} and {B}, also records of the subtype
{A, B} are allowed as input. Therefore, it can not be guaranteed that, after the

synchrocell syncs, the first instance of N gets no further input. The thread handling

this instance can thus not terminate and its resources can not be reclaimed. A

few specific cases of this type of problem can be recognized and optimized out by

snetc, but in the general case (for arbitrary N), the problem remains.

The second problem is a distribution overhead problem. When a record is sent

from one memory domain to another, it must be serialized for communication.

Serialization in many homogeneous environments is a straightforward copy of

memory. However, in cases where serialization requires processing, it can not be

delegated to dma or similar hardware solutions. For SNet networks with light-

weight boxes on large amounts of data, the overhead from serialization can become

a bottleneck.

7.2 Approach

The approach of Hydra’s execution model is to take an orthogonal perspective on

threading: Instead of having a thread for every network, taking records as input and

producing records for consecutive networks, a thread is created for every incoming

thesis April 1, 2010 14:45 Page 117 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

117

C
h
a
p
t
e
r
7
–
H
y
d
r
a
:
a
n
S
N
e
t
im

p
l
e
m
e
n
t
a
t
io
n

record. This thread carries its record through the SNet network and applies boxes

to its record along the way. Using this perspective, inter-thread communication

no longer consists of records, but of synchronization messages. In other words,

Hydra’s execution model brings networks to records, instead of bringing records to

networks.

In the first example network above, N .. M, records coming into the network no

longer need to wait for records that arrived earlier. Every time a record flows into the

network, a thread is started that applies first N and thenM to its record. This means

records may arrive at the network’s output out-of-order, so at the output, the order

needs to be re-established. At this point, threads communicate to determine which

thread should be the first to produce its record on the output. A similar reordering

problem occurs inside a network at synchrocells. However, this reordering problem

is a local reordering, in the sense that it does not need to establish the order of all
records, but per synchrocell only the records that flow through that synchrocell.

Because reordering at the output does require establishing the order of all records,
it is considered a global reordering.

Both the global reordering at the output and local reordering at synchrocells can

be performed with the same mechanism. The input order, i.e. the order in which

records arrive at the input of the network, is recorded in a data structure: Records

are stored in a cons-list1. A cons-list is a type of singly-linked list in which every

node has a pointer to the data contained at that node (in our case: a record) and a

pointer to the next element in the list. The first record to arrive is the first element

(or ‘head’) of the cons-list. Consecutive records are appended to the last element

(or ‘tail’) of the cons-list. The order of the cons-list is never changed. However,

when primitive networks are multiplicitous, the causal order is preserved: If the

response of a primitive network to a record consists of zero records, the cons-node

corresponding to that record is removed and its predecessor is connected to its

successor. If the response consists of multiple records, the first is stored at the

cons-node of the original record and consecutive records are inserted between that

cons-node and its successor.

Hydra’s cons-nodes are implemented as containers. Besides a pointer to the next
cons-node and to the record, containers hold administration variables used for

reordering. Every container is managed by a thread. Inter-thread communication

is implemented using these administration variables. Only the container’s manager

thread may read and write the container’s variables, with the exception of variables

for inter-thread communication: Shared variables in a containermay only be read by
the threadmanaging that container andmay only bewritten by the threadmanaging

the container’s predecessor. Such one-way communication can be implemented

lock-less and atomic. For the basic execution model of Hydra, this is all inter-thread

communication. However, as discussed in section 7.3.3, adding shared variables for

synchrocells significantly relaxes the local reordering problem. Besides the shared

variables in the containers and the synchrocells, threads share no data. Transactions

1The term comes from the programming language Lisp. The term ‘cons’ is short for ‘constructor.’

thesis April 1, 2010 14:45 Page 118 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

118

7
.3
–
C
o
m
p
il
a
t
io
n
sc
h
e
m
e
&
r
u
n
-t
im

e
sy
st
e
m

on these variables and the spawning of new threads are the only interactions between

threads.

7.3 Compilation scheme & run-time system

In this section, we construct a compilation scheme and a run-time system, that

together implement Hydra’s execution model. We start with a compilation scheme

and a run-time system for a small subset of the set of SNet combinators and

incrementally add combinators, changing both compilation scheme and run-time

system where needed. To make clear where the global state is modified—especially

where threads are created or destroyed and where threads communicate—the

compilation scheme is kept purely functional, whereas the run-time system is

written in a procedural way.

The variables in containers are named. The notation ca represents a variable a in a

container c. In procedures,

a ← b

denotes assignment of the value b to a local variable a, whereas

a↞ b

denotes a global (or ‘persistent’) assignment. Procedures within the run-time system

are not considered functional: Their arguments can not be curried and they are not

first-class citizens, i.e. they can not be passed as values.

Compilation schemes translate networks to functions that take a single container as

their argument. Every compilation scheme has an entry-point that introduces han-

dlers for in- and output from the run-time system. The entry-point of a compilation

scheme is indicated by a superscripted star. The result of translating a network with

the entry-point of a compilation scheme is a self-contained program, i.e. the result

does not take any arguments. We first show how stateless sequential networks can

be compiled and what the minimum run-time system for such networks consists

of.

7.3.1 stateless sequential networks: output reordering

We start off with compilation scheme Cseq, which compiles stateless sequential

networks without multiplicity. Boxes in such a network are applied in-order to the

incoming records and always produce one record. Thus, the order in which the

(processed) records are output is the same as the order in which they were input

into the network. However, with a thread for every record, the (temporal) order in

which records arrive at the output of the network is undefined. This means that the

order in which the records arrived at the network’s input must be restored at the

network’s output.

thesis April 1, 2010 14:45 Page 119 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

119

C
h
a
p
t
e
r
7
–
H
y
d
r
a
:
a
n
S
N
e
t
im

p
l
e
m
e
n
t
a
t
io
n

Compilation scheme

First, we look at the compilation of boxes. Since boxes are implemented by some box

language which is already compiled, we can say that box (f) indicates a box with a

function f ∶ record → record as its implementation. A compiled box, therefore, is a

function that takes a container c and applies f to the record contained in c. The

run-time system procedure modifyRecord applies f to the record stored in crecord
and overwrites crecord with the resulting record.

Cseq Jbox (f)K = λc.modifyRecord(f , c)

Consequently, sequential composition translates to function composition, viz.

Cseq JN .. MK = Cseq JMK ○ Cseq JNK

What remains is handling the in- and output. For the latter, we introduce a compiler

known network out, a procedure handleOutput in the run-time system and the

corresponding compilation rule

Cseq JoutK = λc . handleOutput(c)

For the former, we introduce a procedure handleInput in the run-time system, that

takes as an argument the continuation [92, 96] that is applied to every record

coming into the run-time system. Herewith, the entry-point of the compilation can

be written as

C⋆seq JNK = handleInput(Cseq JN .. outK)

Run-time system

In the following, we discuss the required procedures in the run-time system. For

the sake of presentation andmodularity, the procedures are divided into two groups:

transformations of the cons-list and administration required for order restoration.

Procedures of the former group are discussed in this section, whereas procedures of

the latter group are discussed with the compilation schemes discussed in sections

7.3.2 through 7.3.4. The procedure modifyRecord() is not discussed, because at

this point, the precise definition is not important and it is replaced in the next

compilation scheme.

Procedure handleInput(cont)
t ← createContainer();1

markAsFirst(t);2

while not emptyInput()3

t ← insertContainer(cont, t, readInput());4

thesis April 1, 2010 14:45 Page 120 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

120

7
.3
.1
–
S
t
a
t
e
l
e
ss

se
q
u
e
n
t
ia
l
n
e
t
w
o
r
k
s:
O
u
t
p
u
t
r
e
o
r
d
e
r
in
g

The entry-point of the running network is handleInput. It reads records from its

input, using the readInput procedure. We do not discuss readInput in further detail,

but use it as an abstraction from how records are actually read, buffered and parsed.

Every time a record is read from the input, it must be appended to the end of

the cons-list. To this end, t always points to the very last (or ‘tail’) element. The

very first container made in handleInput by means of createContainer is the first (or
‘head’) element of the cons-list. To signify this, the procedure markAsFirst sets the
appropriate administrative variables in the container. How this helps to restore the

causal order at the output is discussed below.

Procedure insertContainer(cont, c, r)
c′ ← createContainer();1

c′next ↞ cnext ;2

cnext ↞ c′;3

markNextPos(c);4

crecord ↞ r;5

if not spawnThread(cont, c) then cont(c);6

;7

return c′;8

Until the input is depleted, all following records taken from the input are appended

by means of the insertContainer procedure. This procedure takes three arguments:

continuation cont, container c and record r. Hereby, the container c is the container
in which record r must be stored. The return value of insertContainer is a new,
empty container, in which a next record may be placed. Within the procedure,

also administration variables of c are set. A new container c′ is created (line 1) and

inserted (lines 2–3) between c and its successor cnext . Some of the administration

variables in c′ depend on its predecessor c. This is why the procedure markNextPos
(on line 4) is invoked on c (as opposed to cnext). It marks the successor of c (cnext)
as being a successor, i.e. not the first container of the cons-list. Like markAsFirst,
markNextPos is an order administrating procedure. These procedures are discussed

in the conclusions & remarks section below.

Now that c′ is set up, r is stored in c and an attempt is made to spawn a thread

that will manage the application of continuation cont to c. Should there be no

resources available for a new thread, before doing anything else, the thread calling

insertContainer must perform this task. After either spawning a new thread, or

applying the continuation in this thread, insertContainer returns the newly created
(empty) container c′.

The last procedure required to obtain a fully functional system is handleOutput. Any
thread reaching the output has to wait until isFirst indicates its container is at the
head of the cons-list. This only happens when all predecessors have been produced

at the output. When it has been established that c is the head of the cons-list, the

record in c is produced on the output. Before c is destroyed, its successor cnext

thesis April 1, 2010 14:45 Page 121 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

121

C
h
a
p
t
e
r
7
–
H
y
d
r
a
:
a
n
S
N
e
t
im

p
l
e
m
e
n
t
a
t
io
n

Procedure handleOutput(c)
wait until isFirst(c);1

writeOutput(crecord);2

propagateFirst(c);3

freeContainer(c);4

must be informed that it is now at the head of the cons-list. This is done using the

procedure propagateFirst.

Conclusions & remarks

The procedures discussed above handle network in- and output, and define the

available transformations on the cons-list. The causal order of records in stateless

sequential networks corresponds to the order in which records are read from the

input. Because elements are placed, upon input, into the cons-list in-order and

no transformations perform any reordering, it follows that the cons-list is at any

time a representation of the causal order. Therefore, a record is only produced at

the output, if it is in the container at the head of the cons-list (as is the case in

handleOutput), it follows that the output order is indeed the causal order.

The procedures that perform position administration (markAsFirst, markNextPos,
isFirst, and propagateFirst) are the only occurrences of inter-thread communication.

As used above, they can be implemented by having a boolean variable in every

container, that is shared between the thread managing that container and the thread

managing the container’s predecessor. Beyond the initialization of this variable

(markAsFirst or markNextPos), the thread managing the container only needs read-

access (isFirst), whereas the thread managing the predecessor only needs write

access (propagateFirst).

In the following compilation schemes, some complexity is added to these adminis-

tration procedures. We postpone the precise definition of these procedures until

then.

7.3.2 multiplicitous boxes

The first extension to Cseq is to allow multiplicitous boxes. Thus, the result of the

application of a box’ function to a record can consist of zero-or-more records. When

the result consists of a single record, everything works as above, so the two new

cases are those where the result is empty, or where it consists of multiple records.

When the result is empty, the container should somehow be removed from the

cons-list, whereas if there are multiple records in the result, containers should be

added. Also, when there are multiple resulting records for which new threads are

spawned, all of them must continue through the remainder of the network. In Cseq,

thesis April 1, 2010 14:45 Page 122 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

122

7
.3
.2
–
M
u
lt
ip
l
ic
it
o
u
s
b
o
x
e
s

this was solved using function composition, which no longer works. Instead, we

introduce continuations—as in handleInput—everywhere.

Compilation scheme

We introduce Cmult as a superscheme of Cseq, such that it allows for multiplicitous

boxes. Because boxes can producemultiple records as a result, the implementation of

the box f is now a function of one record to a list of records, i.e. f ∶ record → [record].
Moreover, the compilation of boxes must now take as an argument the continuation

to be applied to the results. Thus, for continuation cont and container c, we get

Cmult Jbox (f)K = λcont . λc . handleMult(cont, c, f (crecord))

where handleMult takes care of any required cons-list transformations.

In the compilation of sequential networks, the compilation of the second network

is prefixed to the continuation.

Cmult JN .. MK = λcont . λc . Cmult JNK (λc′ . Cmult JMK cont c′) c

Because every level of the compilation scheme now expects a continuation, there is

no more need for the special out network. The entry-point for Cmult can pass the

call to handleOutput as a continuation to the top-level network:

C⋆mult JNK = handleInput(λc . Cmult JNK (λc′ . handleOutput(c′)) c)

Run-time system

The compilation of boxes in Cmult calls the handleMult procedure. The procedure

distinguishes three possible cases of the result: zero, one or multiple records.

Procedure handleMult(cont, c, res)
switch res do1

case []2

markAsDone(c);3

case [r]4

crecord ↞ r;5

cont(c);6

case [r ∶ rs]7

c′ ← insertContainer(cont, c, r);8

handleMult(cont, c′ , rs);9

thesis April 1, 2010 14:45 Page 123 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

123

C
h
a
p
t
e
r
7
–
H
y
d
r
a
:
a
n
S
N
e
t
im

p
l
e
m
e
n
t
a
t
io
n

When there are zero results, the container is marked as done and computation

on the container ends. Because the container’s predecessor and successor may be

managed by two different threads, we do not remove the container itself. Instead,

it can be removed by the predecessor when it tries to write into variables in this

container (i.e. in propagateFirst).

Given a result of precisely one record, that record is stored in the container and the

continuation is applied. This behaviour is the same as that of boxes compiled with

Cseq.
When there are multiple records in the result, new containers have to be inserted

into the cons-list. The order in which records are produced in the result is the

order in which they must be inserted into the cons-list, which is precisely what

insertContainer does.

Conclusions & remarks

Containers may now be added in between two containers already in the cons-list.

Since every container can be managed by its own thread, we must guarantee not to

introduce race-conditions. As observed above, inter-thread communication is lim-

ited to threads managing consecutive containers in the cons-list and exclusively in

the direction of the cons-list, i.e. a thread managing container c can only send mes-

sages to the thread managing c′ = cnext and the latter receives messages exclusively

from the former. A new container c̃ is introduced between two containers, c and
c′ = cnext , exclusively by the thread managing c. After c̃ is inserted (i.e. cnext = c̃ and
c̃next = c′), a new thread is spawned to manage c and the thread running handleMult
continues with c̃ as its container. Thus, no race-conditions are introduced.

Another advantage of the fact that insertContainer spawns a thread for a container

while continuing the calling thread with the successor, is that handleMult can evalu-

ate the list of results lazily. In other words, as soon as the first record of the result is

available, a container can be created and a thread spawned for that record before

the computation of the remainder of the result continues.

7.3.3 synchrocells: local reordering

As described in section 6.2.4, a synchrocell has two or more slots to fill with records.

Every slot is filled with the first record (in causal order) to be associated with

it. Analogously to how threads arrive out-of-order at the network output, they

arrive out-of-order at a synchrocell. Thus, the causal order for records must be

(re)established when they arrive at a synchrocell. The following illustrates why the

mechanism used for output reordering is too restrictive to use for local reordering

at synchrocells.

Consider an empty synchrocell, i.e. no records have arrived yet. We denote the

causal order in which records arrive at the synchrocell as a subscript, i.e. the first

thesis April 1, 2010 14:45 Page 124 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

124

7
.3
.3
–
S
y
n
c
h
r
o
c
e
l
l
s:
L
o
c
a
l
r
e
o
r
d
e
r
in
g

record to arrive at the synchrocell is r1, followed by r2, etc. Let κ(r i) denote the set
of patterns matched by r i . Furthermore, let S i denote the set of all patterns matched

by records r j with j ≤ i, i.e.

S0 = ∅
S i = κ(r i) ∪ S i−1

The difference between output reordering and local reordering is that, for local

reordering, not all predecessors need to have arrived at a synchrocell. If record

r i matches only patterns matched by predecessors, i.e. if κ(r i) ⊆ S i−1, then r i is
produced unchanged on the output immediately. In other words, r i can directly

be produced on the output if some set of predecessors P ⊆ {r j ∣ j < i} exists,
which together match all patterns matched by r i . We call such a set a κ-satisfying
predecessor set. Formally, a set P is a κ-satisfying predecessor set of record r i , if and
only if

κ(r i) ⊆ ⋃
p∈P

κ(p) ⊆ S i−1

The problem is that this causal index i is unknown, because multiplicity can add

or remove arbitrarily many records at any point in the stream and multiplicity

occurs inside a thread, unbeknownst to other threads. However, the cons-list offers

an alternative method of establishing a κ-satisfying predecessor set for record r.
Our strategy is to stall r when it arrives at a synchrocell, until either we establish

a κ-satisfying predecessor set, or we determine such a set does not exist. In the

former case, r continues past the synchrocell, whereas in the latter case, r is stored
by the synchrocell.

In order to establish a κ-satisfying predecessor set, threads must be able to com-

municate to each other the position in the network of the record they manage. We

enumerate the (sequential) network, i.e. we give every primitive network an index.

Furthermore, we add two new variables to the administration variables of contain-

ers: pos and pli. The variable pos indicates the position of the container in terms

of the index of the last network element that it was output from. The variable pli
holds the predecessors’ lowest index, i.e. the minimum pos value of all the container’s
predecessors. Whenever a thread gets output from a network, it increments pos in
its container. If pos was smaller than pli, the new minimum of pos and pli is written
in the pli variable of the next container in the cons-list.

Beforewe demonstrate how this helps to relax the task of reordering to that of finding

any κ-satisfying predecessor set, we illustrate with an example how these extensions

allow for local reordering similar to how we performed output reordering for Cseq.
Consider the network shown in figure 7.1. The network consists of three boxes—

with box functions f , g and h, respectively—and one synchrocell—combining a

record of type {A} with a record of type {B}. We enumerate this network with the

numbers 1 through 4, as shown below the primitive networks in figure 7.1. For the

sake of simplicity, all boxes leave the types of records unchanged. Furthermore, all

thesis April 1, 2010 14:45 Page 125 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

125

C
h
a
p
t
e
r
7
–
H
y
d
r
a
:
a
n
S
N
e
t
im

p
l
e
m
e
n
t
a
t
io
n

f g A
B
} h

1 2 3 4

Figure 7.1 – Enumerated sequential network

r:{B} q:{A} p:{A}

0∞0 0
0 0

1 0
2 0

1∞
0 1
1 1

2 1 2 1
2∞2 22 2
∞∞

2∞
3∞2 3

1

2
3

4

5

6
7

89

ti
m

e

Figure 7.2 – Cons-list with event trace

records flowing into this network have either type {A} or type {B} and all boxes

have both types as input variants. The box at position 4 has type {A, B} as an
additional input variant.

We input three records—p, q and r—into this network. The first two are of type

{A}, whereas the third is of type {B}. The output of the record should thus

consist of two records: the first (h ○ g ○ f)(q) with type {A} and the second

h ((g ○ f)(p) ∪ (g ○ f)(r)) with type {A, B}. Figure 7.2 shows, at the top, the ini-
tial cons-list. The shaded area below every container is the lifetime of the thread

managing that container. We reference these threads by using the name of the

record in the container they manage, i.e. thread tp is the right-most thread in the

figure. In every area representing a thread’s lifetime, there is a trace (over time)

of the values of pos, on the left, and pli, on the right. The dotted arrows indicate

inter-thread communication. All inter-thread communication is asynchronous, so

an arrow indicates two separate events: The starting point of the arrow is a send

event and the arrow tip is a receive event.

The threads are started in the order of arrival of their corresponding records. The

thesis April 1, 2010 14:45 Page 126 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

126

7
.3
.3
–
S
y
n
c
h
r
o
c
e
l
l
s:
L
o
c
a
l
r
e
o
r
d
e
r
in
g

first container was given a pli value of∞ by markAsFirst. All other containers start
with both pos and pli set to 0. Events labelled with an encircled number are as

follows:

1. tr finishes applying f to its record and increments the pos field of its container.

2. tr finishes applying g to its record, increments its container’s pos and arrives

at the synchrocell. At this point, tr can not decide whether its record will be

consumed by the synchrocell. Thus, tr waits. The waiting period is indicated

with the area shaded with diagonal lines.

3. tp finishes applying f to its record, increments it container’s pos and sends a

new pli value to its successor, tq .

4. tq finishes applying f to its record, increments the pos field of its container

and sends a new pli to tr .

5. tp finishes applying g to its record, increments its container’s pos, sends a
new pli to tq and arrives at the synchrocell. Since the synchrocell has index 3

and pli =∞ ≥ 3, tp can decide that all predecessors have already passed this

synchrocell.

6. The record in p is stored in the synchrocell. Having no more record, tp is
finished, making its pos =∞. It sends a new pli to tq and terminates.

7. tq receives the value∞ for its pli. Thus, all predecessors have passed this

synchrocell, because pli =∞ ≥ 3. tq tests to see whether unmatched patterns

remain in the synchrocell.

8. No patterns matched tq ’s corresponding record, so it is output by the syn-

chrocell and continues to network 4, the box with function h.

9. tr receives the value 3 for its pli. Thus, all predecessors have passed this

synchrocell, because pli = 3 ≥ 3, so tr can test for unmatched patterns.

The above example shows that the use of the pos and pli variables suffices to locally

restore causal order. As discussed above, the problem can be further relaxed to

finding a κ-satisfying predecessor set. To do this, we introduce shared variables

to represent the synchrocell. Simultaneous access to these variables is prevented

by a mutually exclusive locking mechanism. When a thread wants access to the

variable, it requests a lock, waits until it is granted the lock (at which point the

thread is guaranteed exclusive access), performs its critical section and releases the

lock. The model we use for the implementation of these locks is a read-on-lock,

release-on-write model, i.e. reading a shared variable automatically requests the

lock and writing to the variable automatically releases the lock. For every pattern p,
we require one variable, plimaxp , that holds the highest pli value of all containers
containing records that match p that have arrived at the synchrocell. When a thread

at a synchrocell finds that the plimax-value for every pattern matched by its record

is larger than its own pli-value, it has established the existence of a κ-satisfying
predecessor set.

thesis April 1, 2010 14:45 Page 127 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

127

C
h
a
p
t
e
r
7
–
H
y
d
r
a
:
a
n
S
N
e
t
im

p
l
e
m
e
n
t
a
t
io
n

plimaxA

r:{A} q:{B} p:{A}

0∞
0 00 0

1 0
1∞2 0

0 1 2∞
0 2

∞∞

0∞

3 0

0

0
tr

0

∞

tp

∞

∞

tr

1
2

3 4
5

6

7

8

ti
m

e

Figure 7.3 – Cons-list and synchrocell variable with event trace

To be able to properly demonstrate how this relaxes the reordering, we adapt the

above example. For the same network, we now use the input shown in figure 7.3,

i.e. the types of q and r have been swapped. Furthermore, the variable plimaxA
has been added to the figure. This is the variable corresponding to the {A} pattern
in the synchrocell. The shaded areas between two horizontal bars indicates the

variable is locked. For every locked period, from top to bottom, the initial value,

the owner of the lock and the final value are shown. The dashed lines to and from

the horizontal bars of the variable represent the lock negotiations (request, acquire

and release). Again, we discuss a few events, as numbered in the figure.

1. tr is the first to reach the synchrocell and requests a lock for the variable cor-

responding to the matching pattern {A}: plimaxA. Until the lock is acquired,
tr stalls (the dotted bar).

2. The variable is locked for tr and the value contained in plimaxA (0) is sent to

tr .
3. tr receives the lock and the value from plimaxA, so it enters its critical section

(the black bar).

4. tp reaches the synchrocell, matches pattern {A} and requests a lock for the

corresponding variable.

5. The variable is locked by tr , so the lock request from tp is stalled.
6. After acquiring the lock, tr calculated the maximum of its own pli and the

value received from plimaxA. The result is 0, which is sent back to plimaxA.

thesis April 1, 2010 14:45 Page 128 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

128

7
.3
.3
–
S
y
n
c
h
r
o
c
e
l
l
s:
L
o
c
a
l
r
e
o
r
d
e
r
in
g

This releases the lock on plimaxA. Because the result is smaller than the

synchrocell’s index, no predecessors with a record with type {A} have yet
been found. Thus, tr sleeps (the striped area) before trying again.

7. tp has received the lock on and value of plimaxA. It computes the maximum

of plimaxA’s value and that of its own pli and returns the result (∞). Since

the result is larger than the synchrocell’s index, the thread decides record p is
consumed by the synchrocell. Thus, after releasing the lock, it terminates as

in the previous example.

8. When trying plimaxA again, tr has found a value in plimaxA that is higher

than tr ’s own pli. This means that there exists a predecessor that matches

this pattern. Because this is the only pattern matched by r, tr has found a κ-
satisfying predecessor set. Therefore, it may continue beyond the synchrocell.

Compilation scheme

The compilation scheme Csync is a superscheme of Cmult . It only adds a definition for

synchrocells. Let sync (κ) denote a synchrocell, where κ is a function from records

to the set patterns matched by the record, i.e. κ ∶ record → ℘pattern. Incrementing

the pos variable after every box is dealt with by passing to handleMult, which is

used to process a box’ results, a container with an incremented pos. The entire

compilation scheme Csync is as follows:

Csync Jbox (f)K = λcont . λc . handleMult(cont, posInc(c), f (crecord))
Csync Jsync (κ)K = λcont . λc . handleSync(cont, c, κ(crecord))
Csync JN .. MK = λcont . λc . Csync JNK (λc′ . Csync JMK cont c′) c
C⋆sync JNK = handleInput(λc . Csync JNK (λc′ . handleOutput(c′)) c)

Run-time system

There are two new procedures required of the run-time system: handleSync and
posInc. The latter is an administrative procedure, discussed in the next section.

handleSync implements the behaviour explained above and is discussed next.

The procedure handleSync consists of two parts. The first part determines whether

or not a κ-satisfying predecessor set exists (lines 4–15). The second part determines

whether the result of the synchrocell is stored in this thread’s container (c), or in one
of its successors (lines 16–31). In order to prevent race-conditions in both parts, there

is never more than one lock on a shared variable required to proceed. Furthermore,

because cpli is asynchronously updated by the calling thread’s predecessor, a local

copy is kept (line 3) that is only updated at the end of each loop body (lines 13–15

and lines 28–30). Before the local pli is updated, the successor’s pli-value is updated,
using propagatePli. This way, if cpli gets updated right after propagatePli, the local
variable has a newer (and thus higher) value than the successor.

thesis April 1, 2010 14:45 Page 129 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

129

C
h
a
p
t
e
r
7
–
H
y
d
r
a
:
a
n
S
N
e
t
im

p
l
e
m
e
n
t
a
t
io
n

Procedure handleSync(cont, c,M)

s ← getSyncState(cpos);1

H ← ∅;2

pli← cpli;3

while M ≠ ∅ foreach p ∈ M do4

plimax ← getVariable(s(p)) ⪧ 1, 2 & 3 in figure 7.3;5

if plimax > pli then ⪧ 8 in figure 7.36

M ← M ∖ {p};7

else if pli > cpos then ⪧ 7 in figure 7.38

M ← M ∖ {p};9

H ← H ∪ {p};10

plimax ←∞;11

setVariable(s(p), max(pli, plimax)) ⪧ 6 in figure 7.3;12

if cpli > pli then13

propagatePli(c);14

pli← cpli;15

if H ≠ ∅ ∧ ¬matchesAll(s,H) then16

repeat17

done← false;18

plimin← getVariable(soutput);19

if isComplete(s,H) then20

crecord ↞ combineSyncMatches(s,H,Crecord);21

done← true;22

else if pli > plimin then23

storeRecord(s,H, crecord);24

markAsDone(c);25

done← true;26

setVariable(soutput , min(pli, plimin));27

if cpli > pli then28

propagatePli(c);29

pli← cpli;30

until done ;31

if ¬isDone(c) then32

posInc(c);33

cont(c);34

thesis April 1, 2010 14:45 Page 130 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

130

7
.3
.3
–
S
y
n
c
h
r
o
c
e
l
l
s:
L
o
c
a
l
r
e
o
r
d
e
r
in
g

The setM contains all patterns matched by the record in c. For every pattern p ∈ M,

we try to determine whether a predecessor matches it or not. The critical section

(lines 5–12) works as described in the example above; If a higher pli-value than
the local pli has been stored in the variable (line 6), a predecessor has been found

that matches pattern p. If this is not the case and all predecessors have passed the

synchrocell (line 8), this thread’s record is the first (in causal order) to match the

pattern. In either case, pattern p no longer needs to be tested, so it can be removed

from M. In the latter case, p is stored in the set of ‘hits’ H and, by setting result to
∞, it is guaranteed that no successor can conclude it has found a hit for p.

A synchrocell is defined to produce a result for the record that matches all remaining

(in causal order) patterns. Thus, if a hit was found (line 16), the thread calling

handleSync must decide whether it is the one that carries on with the result. The

procedure matchesAll catches the corner case where one record matches all patterns,

in which case the calling thread simply continues past the synchrocell. The last

arriving container has the lowest pli-value, so now, opposite to the above, the

minimum pli should be found. This is done in lines 17–31. The variable soutput is
initialized to the synchrocell’s position. The procedure isComplete is true if all slots,
except those indicated in its second argument, have been filled by calls to storeRecord.
If no successor was found and all slots have been filled, the calling thread must

continue with the combined result (lines 20–22). If a successor is found (i.e. a lower

pli-value is stored in soutput), the thread stores its record in the synchrocell, clears

up the container and finishes execution by not applying the continuation to the

container (lines 23–26).

Conclusions & remarks

Besides being used for local reordering at synchrocells, the pli variable is also used
to implement output reordering: markAsFirst(c) sets cpli to∞ (or the highest value

of the type representing positions), markNextPos(c) sets the pli of the successor to
min(cpli , cpos), isFirst(c) tests whether cpli =∞ and propagateFirst is reduced to a
specific case of propagatePli.

At any point in time, the pli-values are weakly decreasing from the head of the

cons-list to the tail, because every thread passes on to its successor the minimum

of its own pli and its position. Since records can only move forward through the

network, their own position is weakly increasing over time. This means that the

pli-value of a single container is also weakly increasing over time.

Csync and the accompanying run-time system do not introduce new transformations

of the cons-list. As before, insertContainer is the only procedure to introduce new
containers (and spawn threads). It is still only called by handleInput and handleMult.
When threads die, they still markAsDone their container and let their predecessor

clean it up (now in propagatePli).

thesis April 1, 2010 14:45 Page 131 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

131

C
h
a
p
t
e
r
7
–
H
y
d
r
a
:
a
n
S
N
e
t
im

p
l
e
m
e
n
t
a
t
io
n

Chydra Jbox (f)K = λcont . λc . handleMult(cont, c, f (crecord))
Chydra Jsync (κ)K = λcont . λc . handleSync(cont, c, κ(crecord))
Chydra JN .. MK = λcont . λc . let

contM = cont ○ λc′ . posQes(c′)
contN = contM ○ Chydra JMK ○ λc′ . posInc(c′)

in Chydra JNK contN (posSeq(c))
Chydra

q
N ∥σδ M

y
= λcont . λc . let

cont′ = cont ○ λc′ . posTla(c′)
left = λc′ . Chydra JNK cont′ posAlt(c′ , 0)
right = λc′ . Chydra JMK cont′ posAlt(c′ , 1)

in if σ(crecord) = 0 then left else right
Chydra

q
N⋆

δ ,γ
y
= λcont . λc . let cont′ = λrec . λc′ . if γ(c′) = recurse

then rec (posRepl(c′))
else cont (posReti(c′))

inY cont′ (posIter(c))
Chydra JN !δ tK = λcont . λc . let

cont′ = cont ○ λc′ . posTla(c′)
c′ = posAlt(c, crecord[t])

in Chydra JNK cont′ c′

C
⋆
hydra JNK = handleInput(λc . Chydra JNK (λc′ . handleOutput(c′)) c)

Figure 7.4 – The final compilation scheme

7.3.4 the final scheme

The final scheme is called Chydra. It is a superscheme of Csync, adding parallel com-

position, serial replication and inspection combination. These three combinators

share the property that networks inside them can not be enumerated as networks

compiled with Csync. For example, whereas in N .. M it was clear that network N
has index 1 and networkM has index 2, networks in N ∥δ M can not be enumerated,

because N does not appear before M, nor vice versa. Consequently, when there is a

synchrocell inside a network in a parallel composition, we need an alternative way

to establish κ-satisfying predecessor sets. We do this by changing the indexing of

networks. For Csync, we enumerated networks with fully ordered indices. Instead,

we use the network indices discussed in section 6.4.3 and section B.3. These network

indices are partially ordered. It follows that the pli-value that is propagated to a

successor is no longer theminimum of a container’s position and its own pli, but
rather the infimum of the two.

thesis April 1, 2010 14:45 Page 132 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

132

7
.4
–
N
o
in
t
r
o
d
u
c
t
io
n
o
f
n
o
n
-t
e
r
m
in
a
t
io
n

The final scheme is shown in figure 7.4. All procedures with a ‘pos’ prefix are proce-

dures that change the position index. For every network index element (section B.3),

there are two corresponding procedures: one to add the network index element to

the index stored in cpos and one to take the network index element away again. The

former has the network index element name as a suffix, whereas the latter has the

reversed network index element name as a suffix. This leaves posInc and posRepl.
posInc was used before, but now it is specialized to increment the least-significant

network index element, which must be a Seq. posRepl does the same for Iter net-
work index elements (used for the serial replication). All procedures adding or

incrementing network index elements automatically call propagatePli.

The Chydra compilation scheme ignores the δ annotations of all operators. For Chydra
all mergers are deterministic. Non-determinism exists in SNet to relax the order

constraint on records in a stream. The execution model in snetc uses this explicitly

to perform first-come first-serve mergers, i.e. the non-deterministic choice of which

record from the input streams to place in the output stream is based on earliest

availability in snetc. Hydra’s execution model does not benefit from this relaxation,

because all processing already occurs out-of-order.

7.4 No introduction of non-termination

In this section, we analyse Hydra’s execution model with regards to termination

behaviour. It is possible to write non-terminating networks in SNet. Therefore,

non-termination for every SNet network can not be decided. This problem is

known as the halting problem. For networks that can be shown to terminate for

every input, however, we give a strong indication that Hydra does not introduce

non-termination due to deadlock or starvation.

Network termination means, that for a finite input, with a finite number of com-

putations, a finite output is produced and all records that remain in the network

are stored in synchrocells. For every network that is guaranteed to reach this state,

executing it with Hydra will reach this state. In the following, we can demonstrate

that the container at the head of the cons-list always reaches its end (either at the

network output, being consumed by a multiplicity of zero or by being stored in

a synchrocell). Furthermore, we demonstrate that its successor becomes the new

head. Since network termination implies a finite output result, by induction these

results imply that the complete output is produced. Thus, Hydra introduces no

starvation. Lastly, we need to show that no threads can deadlock.

7.4.1 starvation

After the container at the head of the cons-list reaches its end, markAsDone propa-
gates its pli-value to its successor. The container at the head of the cons-list is the

only container with a pli value of∞. Therefore, when a container c with cpli =∞ is

thesis April 1, 2010 14:45 Page 133 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

133

C
h
a
p
t
e
r
7
–
H
y
d
r
a
:
a
n
S
N
e
t
im

p
l
e
m
e
n
t
a
t
io
n

passed to markAsDone, it can be removed and freed, indeed making the successor

the head of the cons-list. Thus, it only remains to show that a container with a

pli-value of∞ always reaches its end. To show this, it suffices to show two properties:

Firstly, that if there is a thread processing the container at the head of the cons-list,

it reaches the container’s end. Secondly, that there is always a thread processing the

container at the head of the cons-list.

For the first property, observe that containers flow unobstructed through every

type of network, except the synchrocell. When the container at the head of the

cons-list reaches a synchrocell, it either matches at least one pattern2, or bypasses

the synchrocell (e.g. if it has already synced). Because only the container at the head

of the cons-list has a pli-value of∞, the test for predecessors (line 6 of handleSync)
always fails. Because all network indices are finite, the test to decide non-existence

of predecessors (line 8) always succeeds. Similarly, the test for the existence of

successors (line 23) always succeeds. This demonstrates that the container at the

head of the cons-list has an unobstructed flow through the network.

For the second property, we examine the creation of threads. Initially, there is

only one thread that processes handleInput. Threads are created by spawnThread.
This procedure is only called from insertContainer. insertContainer inserts a new
container after the container given as an argument. It tries to spawn a thread

for the container of its argument and return the newly inserted container. If a

thread is successfully spawned, this new thread continues with the container from

the argument. When spawning a thread fails, the continuation is applied to the

container from the argument, before returning the newly created container. Thus,

when insertContainer is passed the container at the head of the cons-list, there is

always a thread to continue processing that container before processing any other.

insertContainer is called from only two procedures: handleInput and handleMult.
Neither of these apply a continuation to a container before calling insertContainer.
This demonstrates that there is always a thread processing the container at the head

of the cons-list.

7.4.2 deadlock

Deadlock occurs when two or more threads are waiting for each other to release

a lock. In Hydra, threads share only two types of variables: pli-variables and state

variables of synchrocells.

A container c managed by thread tc has a successor c′, pointed to by cnex t , i.e.
cnex t = c′. Container c′ is either managed by the same thread (if spawning a thread

for c failed when c′ was inserted), or it is managed by another thread tc′ . In the

former case, there is no sharing. In the latter case, tc and tc′ share the variable
c′pli. However, tc only has write-access and tc′ only has read-access. Because the

2The type-based routing of records enforces that every record that reaches a network matches at
least one of the network’s input variants (see [37]).

thesis April 1, 2010 14:45 Page 134 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

134

7
.5
–
C
o
n
c
l
u
sio

n

communication through c′pli is asynchronous, it is implemented as a lock-less

variable. Therefore, it can not be (part of) the cause of deadlock.

The synchrocell state variables do require locking. There are two critical sections in

handleSync: lines 5–12 and lines 19–27. Both critical sections require only one lock.
Therefore, no circular dependencies between threads requesting locks can arise.

Furthermore, the computations inside the critical sections are strictly terminating.

This demonstrates no deadlocks are introduced.

7.5 Conclusion

In this chapter, two problemswere identifiedwith the executionmodel implemented

in the current SNet-compiler, snetc. A new implementation, Hydra, with a new

execution model was discussed. The required compilation scheme and run-time

systemwere developed. The problems observed in the executionmodel of snetc are
solved by Hydra: records are processed out-of-order, unrolling of serial replication

no longer poses a resource management problem and the communication between

distributed memory domains has been reduced to synchronisation messages. Also,

a strong indication is given that Hydra does not introduce non-termination for

networks and input that terminate according to the semantics of SNet.

thesis April 1, 2010 14:45 Page 135 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Conclusion

thesis April 1, 2010 14:45 Page 136 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

thesis April 1, 2010 14:45 Page 137 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Ch
ap

te
r8

Conclusions & recommendations

8.1 On-line spatial resource management

Applications for embedded systems and the environments in which these embed-

ded systems have to operate are both continuously widening. This increases the

complexity of such systems, leading to higher development costs. Higher costs and

an ever more critical time-to-market pushes system design towards modularization

of both hard- and software. This modularization often leads to what is referred to in

this thesis as tiled systems. Added benefits of tiled systems include easy scalability

and yield increase. Both are achieved by adding more of the same ‘tiles’ to a design.

This flexibility of the design does come at the cost of making it harder to predict

resource management at design-time. Opening up such systems to applications in-

troduced by the user makes the application set highly unpredictable at design-time

as well. The unpredictability has become prohibitive and demands heuristics for

resource management. In our opinion, it even forces the move of (at least part of)

resource management from design-time to run-time.

the work presented in this thesis

Solutions found in the literature and discussed in chapter 2 all solve (slightly) differ-

ent problems. We have given a formalization (in chapter 3) of the larger problem

that encompasses all problems identified by the related work. For this formalization,

we have given formal definitions of the hardware components (HwEs, routers, links

and interfaces) that together form a platform and of the software components (tasks,

thesis April 1, 2010 14:45 Page 138 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

138

R
e
c
o
m
m
e
n
d
a
t
io
n
s
f
o
r
f
u
t
u
r
e
w
o
r
k

implementations and channels) that together form an application. We have given

definitions for resource capacities and resource requirements, that are each other’s

dual, such that they can be compared to see whether the resource requirements

of a software component are met by the resource capacities of a hardware compo-

nent. Furthermore, we have provided ways to composite, accumulate and threshold

both capacities and requirements. Finally, we have defined QoS constraints on

applications.

With these definitions, we have given definitions for what constitutes on-line re-

source management, i.e. finding an assignment of applications to platforms that

meet the application’s QoS constraints. Such assignments, called execution lay-

outs, have been given qualitative metrics (adherence, adequacy and feasibility) and

quantitative metrics (cost), so that they can be compared.

We have introduced (in section 3.4) and implemented (chapter 4) a heuristic, that

may be used to perform on-line resource management and shown how it relates to

the qualitative metrics. The implementation has been described on a conceptual

level by algorithms and their analysis, and on a concrete level by means of an

implementation in a Linux kernel, named Kairos, providing user interfaces that

adhere mostly to common practices. Furthermore, the input required by the on-line

spatial resource manager has been specified and intuitions have been offered to

designers of applications on how to interpret abstract concepts in this input.

By means of a large case study and a synthetic benchmark, we have demonstrated

that Kairos is applicable in realistic scenarios in chapter 5. The time it requires to find

execution layouts is well within the acceptable limits for the intended platforms and

applications. The solutions found compare relatively well to exhaustively optimized

solutions.

Kairos’ performance (both in computational terms, as well as in terms of the result)

improves significantly when applications are (at least) an order ofmagnitude smaller

than the platform on which they have to run. Heterogeneity helps to reduce the

execution cost of applications, both in low and high utilization cases. On-line spatial

resource management can deal with heterogeneity, but if such flexibility is desired,

the design of platforms should take into consideration some additional constraints,

i.e. heterogeneity is best distributed evenly over the platform and the interconnect

should offer sufficient resources.

recommendations for future work

On-line spatial resource management vastly increases a system’s flexibility and,

therewith, its applicability. If standards for platform design can be developed (either

by formal standardization organizations or by specialized industrial consortia),

this new flexibility may lead to a considerable life-time extension of embedded

systems as application platforms. In other words, it may do for the mobile phone

what x86 backwards-compatibility did for the desktop computer: Make software for

thesis April 1, 2010 14:45 Page 139 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

139

C
h
a
p
t
e
r
8
–
C
o
n
c
l
u
sio

n
s
&
r
e
c
o
m
m
e
n
d
a
t
io
n
s

the current generation of hardware immediately accessible for the next generation.

This is why standardization and a further exploration of the greatest common

denominator of such systems is worth pursuing.

In that same light, hardware design can be improved for this new perspective on

embedded systems. HwEs are still commonly developed either for the general

purpose or for specific scenarios, e.g. assuming very specific integration in a hard-

ware platform. Design methods should be developed that make HwEs even more

off-the-shelf components for system design. For example, processors should have

local instruction memories large enough to store typical software kernels, to lower

latency, communication volume and dependency on interconnect architecture.

More specifically for on-line resource management, better benchmarks are required.

Both synthetic benchmarks and databases of case studies can serve as a driver

for research and the exploration of new programming paradigms that take on-

line resource management into account. Such benchmarks lead not only to better

comparisons of resource managers, but also expose strengths and weaknesses in

the design of applications and platforms.

The added flexibility offered by on-line resource management also increases the

desirability of having systems capable of task migration. This is a challenge for

all disciplines involved in embedded system design: from hardware designer to

real-time analyst. Allowing task migration will open doors to ad-hoc adding and

removing of hardware, but also to switching power modes and QoS levels.

8.2 SNet

We have given a denotational semantics of the language SNet (in chapter 6) by

giving a translation from SNet to the pure, lazy, functional programming language

Haskell. In this translation, non-determinism in SNet has been translated to

choices represented by an oracle. Given an oracle, the behaviour of a translated

SNet network is purely functional, i.e. fully deterministic. Using the presented

denotational semantics, a proof has been provided that, for every oracle, every

SNet network is prefix monotonic.

Furthermore, two problems were identified with the execution model implemented

in the current SNet-compiler, snetc. A new implementation, Hydra, with a new

execution model was discussed in chapter 7. The required compilation scheme and

run-time system were developed. The problems observed in the execution model of

snetc are solved by Hydra: records are processed out-of-order, unrolling of serial

replication no longer poses a resource management problem and the communica-

tion between distributed memory domains has been reduced to synchronisation

messages. Also, Hydra has been shown to not introduce non-termination for net-

works and input that terminate according to the semantics of SNet.

thesis April 1, 2010 14:45 Page 140 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

140

R
e
c
o
m
m
e
n
d
a
t
io
n
s
f
o
r
f
u
t
u
r
e
w
o
r
k

recommendations for future work

SNet separates the concerns of application engineering and concurrency engineer-

ing. This was motivated by a desire to relieve the application engineer from the

responsibility of concurrency engineering. The downside of this approach is that it

makes it harder for the application engineer to convey the knowledge he or she does
have about concurrency opportunities in the application. For example, because

SNet assumes possible data dependencies everywhere, the characterization of the

input data can have a large impact on the performance of a running SNet network.

The possibilities for optional input from the application engineer must be further

explored.

The characterization of (input) data andworkload can be further exploited by adding

to a run-time system a means of profiling and (possibly) just-in-time compilation.

Resource management may also benefit from such run-time profiling. We iden-

tify this (run-time profiling based resource management) as the most promising

direction of future research.

thesis April 1, 2010 14:45 Page 141 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Ap
pe

nd
ixA

Benchmark results

This appendix lists results for the benchmarks discussed in chapter 5. First, we

present the Kairos configurations used. Next, we report on run-times of the experi-

ments.

A.1 Kairos configurations

Table A.1 shows the four configurations of Kairos used. The parameters refer to those

used in chapter 4. The k parameter represents the added search depth in the search

for a covering HwE set, as used in algorithm 2. The parameters c and f indicate the
weights used in the cost function for communication and fragmentation reduction,

respectively (see algorithm 4). The same cost function uses a large constant to

indicate the cost of traversing an unknown distance. This is parameter U .

Optimization target Name k c f U

None (First-Fit) FF 2 0 0 1000

Communication Cost CC 2 1 0 1000

Reduce fragmentation RF 2 0 1 1000

Comm. cost / red. frag. CF 2 2 1 1000

Table A.1 – Kairos configurations

thesis April 1, 2010 14:45 Page 142 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

142

A
.2
–
R
u
n
-t
im

e
s

Platform

Request MeshHo MeshHe9 MeshHe94 MeshHeClust

A1 3180 5120 2290 1780

A2 25850 6200 1980 4540

A3 8250 4350 3960 3630

A4 1410 3370 1610 920

rst

A4 2400 1050 1430

A3 4130 2990 5050

A2 1250 1550 1990

A1 1830 1250 1120

Clairvoyant 202935360 3953550 87080 153470

Table A.2 – Run-times [ms] for the ilp solutions

A.2 Run-times

The run-times of the ilp solution are shown in table A.2. At the bottom are run-

times for the clairvoyant solution. As discussed in chapter 5, the ilp solution does

not take into account validation.

For space reasons, we only list the run-times of two Kairos configurations (in

table A.3). The variation of these results for the other two configurations was minor.

Because of the results are in the microsecond scale (whereas the ilp results are

expressed in milliseconds), they are more sensitive to small variations in the system.

In our experimental set-up, it was not possible to measure accurately the effect of

interrupt handling by the Linux kernel.

The ilp solution was calculated using cplex version 12.0.1 on a server with two Intel

Xeon E5430 (quad-core) processors at 2.66 GHz. Assigned resources were limited

at four cores and two gigabytes of memory. Utilization of the four assigned cores

was continuously over 95% for the duration of the tests. The Linux kernel with the

Kairos implementation was run on an Arm926 processor at 200 MHz.

thesis April 1, 2010 14:45 Page 143 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

143

A
p
p
e
n
d
ix

A
–
B
e
n
c
h
m
a
r
k
r
e
su
lt
s

M
e
sh

H
o

M
e
sh

H
e
9

M
e
sh

H
e
9
4

M
e
sh

H
e
C
l
u
st

R
e
q
.

B
M

R
V

B
M

R
V

B
M

R
V

B
M

R
V

First-Fit

A
1

3
2
0

1
1
9
4
1

1
9
3
5

4
3
7
5

2
3
5

1
0
4
5
1

1
9
5
5

2
9
0
1
2

4
1
4

1
5
8
9
5

1
9
8
5

4
9
4
5

2
0
4

1
3
3
5
7

2
1
7
7

7
5
7
5

A
2

4
1
3

1
0
1
9
8

2
3
1
6

6
1
5
9

3
3
4

1
1
5
6
0

2
3
1
7

5
7
6
2

2
8
9

1
2
3
5
0

2
3
0
2

5
6
7
7

2
7
7

1
4
8
1
9

2
5
3
9

5
6
2
8

A
3

7
1
4

1
6
5
7
9

3
1
4
9

1
1
8
5
4

5
1
5

1
5
4
7
9

3
3
8
5

9
6
5
0

4
2
7

1
7
2
3
8

3
1
8
2

1
1
4
3
2

4
0
0

1
9
1
6
0

3
0
9
9

1
1
1
5
8

A
4

3
4
9

1
5
5
9
9

1
4
6
1

5
2
3
0

2
5
4

1
8
6
9
5

1
7
0
4

4
6
0
2

2
2
8

9
4
7
6

1
5
2
2

7
4
1
1

2
2
0

1
1
8
4
7

1
7
5
2

4
2
6
6

rs
t

A
4

2
9
5

1
0
7
1
1

1
5
8
5

4
3
1
8

2
6
1

4
6
7
6
1

1
5
2
6

5
4
0
0

2
2
5

1
6
8
6
2

1
7
6
9

4
5
9
8

2
5
8

1
6
8
5
2

1
9
1
3

5
3
9
8

A
3

6
6
9

1
6
7
8
1

3
1
4
2

1
1
5
3
1

4
9
9

1
5
1
9
3

3
3
0
2

1
0
2
9
8

4
1
4

1
5
7
0
9

2
9
3
2

1
2
6
8
1

3
8
4

1
8
7
4
2

3
0
8
0

1
4
5
9
0

A
2

9
2
9

1
1
8
8
0

3
3
9
2

5
7
3
3

3
4
6

1
2
7
3
9

2
2
5
3

5
6
2
3

3
0
2

1
2
9
7
0

2
5
7
9

5
6
3
6

2
8
3

1
3
8
6
6

2
9
5
7

5
7
6
0

A
1

3
1
7

1
1
3
6
7

1
8
7
1

3
8
2
4

2
6
1

1
1
2
0
1

2
1
8
0

5
7
0
2

2
5
7

5
8
2
2

3
2
2
7

5
1
4
4

2
2
0

1
0
0
1
0

2
0
4
2

7
3
5
2

Comm./Frag.

A
1

2
9
8

1
0
4
8
8

2
1
0
2

7
2
2
5

2
6
9

1
1
2
1
1

2
5
1
6

1
3
7
3
1

3
3
1

1
1
8
1
1

2
4
0
5

5
3
4
0

1
9
8

1
4
9
0
7

2
2
8
7

5
2
3
1

A
2

4
0
7

1
2
4
3
7

2
3
9
9

7
1
9
2

3
7
8

1
2
8
2
8

2
5
5
6

8
7
8
7

3
0
5

1
1
4
0
9

2
3
2
2

7
8
1
3

2
9
3

1
2
5
4
8

2
9
1
9

9
0
7
5

A
3

7
1
2

2
1
3
1
0

3
2
9
3

8
6
2
8

6
2
7

1
8
2
5
7

3
1
7
0

9
1
3
5

4
4
6

1
6
4
6
1

3
4
5
2

9
8
4
6

4
0
0

1
8
3
3
0

3
0
5
8

1
3
8
5
4

A
4

3
2
1

1
5
6
9
7

1
6
2
5

4
5
4
1

2
8
3

1
5
8
6
6

1
9
2
2

8
4
5
9

2
5
0

1
0
4
1
4

1
5
8
6

4
7
2
0

2
1
4

1
1
0
0
4

1
8
2
8

4
3
1
0

rs
t

A
4

2
9
1

1
1
2
4
6

1
6
3
2

4
5
1
4

2
5
6

1
5
4
8
5

1
5
0
8

4
7
5
0

2
2
2

1
7
8
3
8

2
0
5
8

2
2
3
3
4

2
3
3

1
7
3
1
1

1
9
0
6

5
4
1
7

A
3

6
7
2

1
6
4
1
5

3
5
1
1

1
5
4
9
5

5
5
2

1
5
6
3
0

3
4
1
0

1
8
4
8
7

4
6
9

1
7
4
0
8

3
1
2
4

9
1
0
1

3
8
7

1
9
1
6
4

3
1
7
7

7
5
2
5

A
2

4
2
7

1
3
8
8
0

2
4
1
9

7
2
1
1

5
7
8

1
3
5
9
3

2
2
6
0

5
9
2
9

3
8
2

1
5
3
0
5

2
8
0
7

5
9
2
5

2
8
9

1
3
1
9
9

2
5
1
0

5
6
2
5

A
1

3
3
1

1
3
4
8
0

2
0
8
8

5
1
1
6

2
8
3

1
1
4
5
8

2
0
0
1

5
0
9
2

2
8
9

5
4
0
1

3
1
9
5

5
2
3
4

2
2
0

1
0
3
1
2

2
0
4
2

7
7
1
0

T
a
b
l
e
A
.3
–
R
u
n
-t
im

e
s
[µ
s]
o
f
tw
o
re
p
re
se
n
ta
ti
v
e
K
a
ir
o
s
c
o
n
fi
g
u
ra
ti
o
n
s
(f
ra
g
m
e
n
ta
ti
o
n
a
n
d
m
ix
e
d
c
o
m
m
u
n
ic
a
ti
o
n
/f
ra
g
m
e
n
ta
ti
o
n
)
p
e
r
p
la
tf
o
rm

,
p
e
r

p
h
a
se
:
(B
)i
n
d
in
g
,
(M

)a
p
p
in
g
,
(R
)o
u
ti
n
g
,
(V

)e
ri
fi
c
a
ti
o
n

thesis April 1, 2010 14:45 Page 144 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

thesis April 1, 2010 14:45 Page 145 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Ap
pe

nd
ixB

Structure definitions for SNet

B.1 Core representation of SNet

{-# LANGUAGE RecordWildCards , TypeSynonymInstances #-}
module Language.SNet.Syntax where

import qualified Data.IntMap as IM
import qualified Data.IntSet as IS
import Data.Array.IArray hiding ((!))
import qualified Data.Array.IArray as A((!))

type N ≙ Int
type Z ≙ Int
type ℘L ≙ IS.IntSet

Labels in records are encoded as integers for fast access. Possibly, the original names

can be stored in lookup-tables in the context, but in general, we do not want strings

in the run-time environment. For fast resolution of fields, tags and binding tags,

they are encoded as follows:

type L ≙ Z

isField , isTag , isBindingTag ∶∶ L → Bool
isField n ≙ n > 0
isTag n ≙ n < 0 ∧ even n
isBindingTag n ≙ n < 0 ∧ odd n

thesis April 1, 2010 14:45 Page 146 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

146

B
.1
–
C
o
r
e
r
e
p
r
e
se
n
t
a
t
io
n
o
f
S
N
e
t

The types for record content are either tag values (T) or box language values (blv).
Because the difference between fields and tags is abstracted away from Haskell’s

type system by encoding them all as ints, the content of a member of a record is

either an instance of T or of blv. This gives the general ‘content type’ for any record

member: C.

type T ≙ Z
type C ≙ Either blv T

Now the representation of the box type (B) and box function (F) can be given.

Note that a box can produce records of different variants of record types. In this

implementation, every response form a box is the content of the response, annotated

with the variant number. This variant number is the index in the range of the box

type, viz.

data B ≙ [L] ↦ Array N [L]
type BoxFunc blv ≙ [C] → [(N, [C])]

Record types (R) are described by the total set of labels contained in a record of that

type. In other words, the Haskell type for record types is a set of labels. Given a box

language value type blv, a record is a finite map from labels to their corresponding

content. Thus, the empty record is an empty map and the type of a record is the

domain of the finite map. Extracting a member from the record is a projection from

the label to the content.

type R ≙ ℘L

type R ≙ IM.IntMap C

emptyRec ≙ IM.empty ∶∶ R

typeOf ≙ IM.keysSet ∶∶ R → R

(!) ∶∶ R → L → C

(!) ≙ (IM. !)

combine ∶∶ R → R → R

combine ≙ IM.union

A record must be converted to a list of relevant content, before a box function can

be applied to it. Likewise, the output of a box must be translated back into a record.

The former is simply the sequential selection of all members from the record in the

order in which their labels occur in the domain of the box type. The latter consists

of first selecting the variant indicated in the result and then using that variant to

convert the contents of the result into a record.

toBox ∶∶ B → R → [C]

toBox (dom ↦ _) r ≙ map (r !) dom

fromBox ∶∶ B → (N, [C]) → R
fromBox (_ ↦ ran) (i ,es) ≙ IM.fromList $ zip (ran A. ! i) es

thesis April 1, 2010 14:45 Page 147 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

147

A
p
p
e
n
d
ix

B
–
S
t
r
u
c
t
u
r
e
d
e
f
in
it
io
n
s
f
o
r
S
N
e
t

SNet defines a sub-/supertype relation on record types. The relation is defined such

that both of the following rules must hold:

1. All binding tags in the supertype must also be in the subtype and vice versa.

2. The subtype is a superset of the supertype.

(≼) ∶∶ R → R → Bool
sub ≼ super ≙ subbinds = superbinds ∧ supermisc ⊆ submisc

where
(subbinds , submisc) ≙ IS.partition isBindingTag sub
(superbinds , supermisc) ≙ IS.partition isBindingTag super

Network types are formulated on records. The simple network type (F) has a single
record type as a domain and all possible response record types as a range. A full

network type (N) is a collection of all variants of simple network types that together

describe the full variance of the network. Box types can be generalized to simple

network types by translating the lists of types of content to record types.

data F ≙ R ↣ [R]
type N ≙ [F]

generalize ∶∶ B → F
generalize (dom ↦ ran) ≙ IS.fromList dom ↣ map IS.fromList (elems ran)

Routing through a network is based on type matches. Because types can overlap

(sub-/supertypes), preference for one route over another is given by means of the

‘strenght’ of a match. The strength of the match between network type t and record

r is −1 if the type of r is not a subtype of t. Otherwise, it is the size of the largest

matching variant of t.
match ∶∶ R → N → Z
match rec net ≙ maximum

(-1 : [IS.size dom ∣ (dom ↣ _) ← net , typeOf rec ≼ dom])

Another important concept from SNet that involves both routing and type is flow

inheritance. When a record is fed into a box, the members of the record that the

box does not take as input are flow inherited. This is done in separate steps here:

separation (�) and fusion (�). Based on the expected input type of a network, a

record can be separated into a ‘through part’ and an ‘around part.’ These are non-

overlapping records that, together, make up the original record. To not have to a

lot of type plumbing in any implementation using this module, the separation is

a type class, the members of which are the different types. Separation based on

simple network types is the same as separation on the domain of the simple network

type. Separation on box types is the same as separation on the generalized box type.

The important definition is that of separation based on record types. For fusion, it

is important to note that for any members that occur both in the flow inherited

set and in the result, the members in the result are preferred. Haskell map unions

prefer elements in the left operand.

thesis April 1, 2010 14:45 Page 148 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

148

B
.2
–
E
x
p
r
e
ssio

n
s
a
n
d
pa
t
t
e
r
n
s

data I ≙ I { through , around ∶∶ R }

class Inheritable t where (�) ∶∶ t → R → I
instance Inheritable F where (�) (t ↣ _) ≙ (�) t
instance Inheritable B where (�) ≙ (�) ○ generalize
instance Inheritable R where
(�) t ≙ uncurry I ○ IM.partitionWithKey (λk _ → k ∈ t)

(�) ∶∶ I → R → R
inheritance � result ≙ result ∪ around inheritance

flowInherit ∶∶ Inheritable t ⇒ t → (R → [R]) → R → [R]
flowInherit t f r ≙ (map (inh �) ○ f ○ through) inh

where
inh ≙ t � r

Finally, SNet networks are represented as an algebraic data type. The ADT is

parametric, so that different stages of a compiler or run-time system can do structure

preserving rewrites.

data Net
a -- annotation, i.e. context
b -- box function representation
f -- snet filter representation
p -- snet pattern representation
≙ Box {ctxt ∶∶ a , n ∶∶ N, b ∶∶B, f ∶∶b}
∣ Filter {ctxt ∶∶ a , n ∶∶ N, A ∶∶ f }
∣ Sync {ctxt ∶∶ a , n ∶∶ N, P ∶∶ [p]}
∣ C_Seq {ctxt ∶∶ a , n ∶∶ N, L ∶∶ [Net a b f p]}
∣ C_Par {ctxt ∶∶ a , n ∶∶ N, L ∶∶ [Net a b f p] , δ ∶∶ Bool}
∣ C_Split {ctxt ∶∶ a , n ∶∶ N, body ∶∶ Net a b f p , δ ∶∶ Bool , sel ∶∶ L}

∣ C_Star {ctxt ∶∶ a , n ∶∶ N, body ∶∶ Net a b f p , δ ∶∶ Bool , γ ∶∶ [p]}

netType ∶∶ Net a b f p → N
netType ≙ n

B.2 Expressions and patterns

{-# LANGUAGE GADTs , KindSignatures , MultiParamTypeClasses #-}
module Language.SNet.Evaluation where

import Language.SNet.Syntax
import qualified Data.IntMap as IM

Any evaluable type must be annotated with the type of the result of annotation. In

other words, evaluating an instance of a t will result in an instance of t. Evaluation

thesis April 1, 2010 14:45 Page 149 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

149

A
p
p
e
n
d
ix

B
–
S
t
r
u
c
t
u
r
e
d
e
f
in
it
io
n
s
f
o
r
S
N
e
t

takes a record as context. Names in expressions, types, etc. refer to the names as

they occur in the context record1.

class Evaluable a where
eval ∶∶ R → a t → t

Both filters and patterns have evaluable expressions. Filters can copy fields contain-

ing box language values and can perform common integer arithmatic on (binding)

tags. Patterns match types and allow value dependencies on tag values, again includ-

ing arithamtic. Their common expression language is represented with the ADT

E.

data E a where
EL ∶∶ L → E T
ET ∶∶ T → E T
E× ∶∶[E T] → E T
E÷ ∶∶[E T] → E T
Emod ∶∶[E T] → E T
E+ ∶∶[E T] → E T
E− ∶∶[E T] → E T
Emin ∶∶[E T] → E T
Emax ∶∶[E T] → E T
E∣.∣ ∶∶ E T → E T
E¬ ∶∶ E Bool → E Bool
E∧ ∶∶[E Bool] → E Bool
E∨ ∶∶[E Bool] → E Bool
E? ∶∶ E Bool → E a → E a → E a
(⩦) ∶∶ Eq a ⇒ E a → E a → E Bool
(⩦̸) ∶∶ Eq a ⇒ E a → E a → E Bool
(⋖) ∶∶ Ord a ⇒ E a → E a → E Bool
(⩿) ∶∶ Ord a ⇒ E a → E a → E Bool
(⋗) ∶∶ Ord a ⇒ E a → E a → E Bool
(⪀) ∶∶ Ord a ⇒ E a → E a → E Bool

The evaluation of E is rather unsurprising.

instance Evaluable E where
eval rec (EL n) ≙ either (error "Non-int␣stored␣in␣tag") id (rec!n)
eval rec (ET i) ≙ i
eval rec (E× is) ≙ foldl1 (∗) (map (eval rec) is)
eval rec (E÷ is) ≙ foldl1 div (map (eval rec) is)
eval rec (Emod is) ≙ foldl1 mod (map (eval rec) is)
eval rec (E+ is) ≙ foldl1 (+) (map (eval rec) is)
eval rec (E− is) ≙ foldl1 (-) (map (eval rec) is)
eval rec (E∧ bs) ≙ foldr1 (∧) (map (eval rec) bs)
eval rec (E∨ bs) ≙ foldr1 (∨) (map (eval rec) bs)
eval rec (Emin is) ≙ minimum (map (eval rec) is)

1In this type, a t is independent of blv. Most evaluable types are independent of blv. Only filter
actions require this parameter. For brevity, the blv parameter is omitted where not explicitly relevant.

thesis April 1, 2010 14:45 Page 150 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

150

B
.2
–
E
x
p
r
e
ssio

n
s
a
n
d
pa
t
t
e
r
n
s

eval rec (Emax is) ≙ maximum (map (eval rec) is)
eval rec (E∣.∣ i) ≙ abs (eval rec i)
eval rec (E¬ b) ≙ not (eval rec b)
eval rec (E? i t e) ∣ eval rec i ≙ eval rec t

∣ otherwise ≙ eval rec e
eval rec (l ⩦ r) ≙ eval rec l = eval rec r
eval rec (l ⩦̸ r) ≙ eval rec l ≠ eval rec r
eval rec (l ⋖ r) ≙ eval rec l < eval rec r
eval rec (l ⩿ r) ≙ eval rec l ≤ eval rec r
eval rec (l ⋗ r) ≙ eval rec l > eval rec r
eval rec (l ⪀ r) ≙ eval rec l ≥ eval rec r

Patterns are used in synchrocells and as terminators for the star. All patterns evaluate

to Maybe R; if the pattern matches, the type of the matching part is returned. ‘Plain’

patterns (PP) match a type. Guard patterns (PG) match a type and evaluate an

expression.

data P a where
PP ∶∶ R → P (Maybe R)
PG ∶∶ R → E Bool → P (Maybe R)

instance Evaluable P where
eval rec (PP t) ∣ typeOf rec ≼ t ≙ Just t

∣ otherwise ≙ Nothing
eval rec (PG t g) ∣ typeOf rec ≼ t ∧ eval rec g ≙ Just t

∣ otherwise ≙ Nothing

Filters consist of hierarchical structures of filter actions (A). The simplest actions

are field actions (A f) that can only copy fields. They are specified by two labels,

the first is the label in the input record (source) and the second is the label in the

output record (destination). The result of a field action is a single record entry, i.e. a

combination of label and content. Tag actions (At) can contain expressions in E.

The result of a tag action is a single record entry (label and content). A record action

(AR) consists of a sequence of field and/or tag actions. A ‘plain’ action consists of a

sequence of record actions. Finally, a guard action evaluates a boolean expression,

to decide which alternative action is taken.

data A a where
A f ∶∶ L → L → A (L,C)
At ∶∶ L → E T → A (L,C)
AR ∶∶ [A (L,C)] → AR
AP ∶∶ [AR] → A [R]
AG ∶∶ E Bool → A a → A a → A a

The evaluation of actions is rather straightforward.

instance Evaluable A where
eval r (A f d s) ≙ (d ,r !s)
eval r (At d s) ≙ (d ,Right (eval r s))

thesis April 1, 2010 14:45 Page 151 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

151

A
p
p
e
n
d
ix

B
–
S
t
r
u
c
t
u
r
e
d
e
f
in
it
io
n
s
f
o
r
S
N
e
t

eval r (AR as) ≙ IM.fromList (map (λa → eval r a) as)
eval r (AP as) ≙ map (λa → eval r a) as
eval r (AG i t e) ≙ eval r (if eval r i then t else e)

B.3 Network indices

module Language.SNet.Index where

A network index must uniquely identify a network in a network expression. Net-

work indices are made up out of network index elements. There are three kinds of

network index elements to indicate networks: sequential (Seq), iteration (Iter) and
alternative (Alt). Iteration network index elements are used to indicate in what

unfolding of a serial replication a network sits. Alternative network index elements

are used to indicate a choice for a branch in a split or parallel composition. There

are to other kinds of network index elements, Split and Merge, that refer to the

splitter and the merger of a parallel composition, respectively.

data NetIdxEl
≙ Seq { val ∶∶ N }
∣ Iter { val ∶∶ N }
∣ Split
∣ Alt { val ∶∶ N }
∣ Merge
deriving Eq

An network index (Ψ) is a list of network index elements. The list is organised

‘deepest first’, i.e. the first element in the list is the index of the innermost (or ‘least

significant’) network structure. However, because the intuition from lexicographical

order is to have the outermost (or ‘most significant’) network index element at the

head of the list, we define an ‘append’ operator (⊕) to add a network index element

to the ‘deep-end’ of the network index.

type Ψ ≙ [NetIdxEl]

(⊕) ∶∶ Ψ → NetIdxEl → Ψ

(⊕) ≙ flip (:)

As an example, consider the network expression A .. (B .. C)⋆F,γ ∥F D. The index

of network A is [Seq 0]. The index of network B is (for iteration i of the star B is

in) [Seq 0, Iter i,Alt 0, Seq 1].

Indices are partially ordered, sowe can define an infimum. Since themost significant

index element is the last element in the list, we reverse indices, recursively determine

the infimum and reverse the result back to the proper order.

inf ∶∶ Ψ → Ψ → Ψ

inf l r ≙ reverse $ inf’ (reverse l) (reverse r)
where

thesis April 1, 2010 14:45 Page 152 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

152

B
.3
–
N
e
t
w
o
r
k
in
d
ic
e
s

inf’ (l:ls) (r:rs) ∣ l = r ≙ l : inf’ ls rs
inf’ ls●(Seq l:_) rs●(Seq r:_)
∣ l < r ≙ ls
∣ l > r ≙ rs

inf’ ls●(Iter l:_) rs●(Iter r:_)
∣ l < r ≙ ls
∣ l > r ≙ rs

inf’ [Split] (Alt _:_) ≙ [Split]
inf’ (Alt _:_) [Split] ≙ [Split]
inf’ [Merge] rs ≙ rs
inf’ ls [Merge] ≙ ls
inf’ _ _ ≙ []

thesis April 1, 2010 14:45 Page 153 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Ap
pe

nd
ixC

Literate programming substitutions

C.1 BasicHaskell syntax

≙ =
● @
← <-
λ \
→ ->
⇒ =>
○ .
¬ not
∧ &&
∨ ||
≤ <=
= ==
≠ /=
≥ >=
N NAT
Z INT
⊆ ‘isSubsetOf‘
∈ ‘member‘
∪ ‘union‘
⊒ ‘isSuffixOf‘

thesis April 1, 2010 14:45 Page 154 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

154

C
.2
–
In
d
ic
e
s
a
n
d
o
r
a
c
l
e
s

C.2 Indices and oracles

ψ, Ψ index, Index
ω, Ω oracle, Oracle
↾ |>>
⊕ +++

C.3 SNet types & values and their operators

L Label
R RecType
℘L LabelSet
T TagValue
C (Content blv)
R (Record blv)
b,B boxtype, BoxType
f, F funtype, FunType
n,N fultype, FulType
f , F boxfunc, (BoxFunc blv)
↣ :->
↦ :|>
≼ <:=
� -|->
� >-|-
I Inh
I (Inherit blv)

C.4 Types for program representation

c.4.1 hiding the blv type parameter

a evaluable and evaluable blv

thesis April 1, 2010 14:45 Page 155 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

155

A
p
p
e
n
d
ix

C
–
L
it
e
r
a
t
e
p
r
o
g
r
a
m
m
in
g
su
b
st
it
u
t
io
n
s

c.4.2 expressions

E Expr and (Expr blv)
EL ExprRef
ET ExprInt
E× ExprMul
E÷ ExprDiv
Emod ExprMod
E+ ExprAdd
E− ExprSub
Emin ExprMin
Emax ExprMax
E∣.∣ ExprAbs
E¬ ExprNot
E∧ ExprAnd
E∨ ExprOr
E? ExprITE
⩦ :==:
⩦̸ :!=:
⋖ :<:
⩿ :<=:
⋗ :>:
⪀ :>=:

c.4.3 patterns

P Pattern and (Pattern blv)
PG GuardPattern
PP PlainPattern

c.4.4 actions

A Action and (Action blv)
AR RecAction
At TagAction
A f FieldAction
AG GuardAction
AP PlainAction

thesis April 1, 2010 14:45 Page 156 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

156

C
.5
–
S
e
m
a
n
t
ic
s

C.5 Semantics

c.5.1 hiding the blv type parameter

Router (Router blv)
Branch (Branch blv)
SyncState (SyncState blv)

c.5.2 data types

s (Substream blv)
S (Stream blv)
S̃ (RoutedStream blv)
N (SemNet blv)

c.5.3 networks and semantics

δ delta
γ terminator
N body and subNet
J.K semantics
JNK semantics(body) and semantics(subNet)
J.K semantics’
JNK semantics’(subNet)
Jbox(b, f)K semantics(Box {..})
Jfilter(f,A)K semantics(Filter {..})
Jsync(P)K semantics(Sync {..})r
●●
N←L

N
z

semantics(C_Seq {..})
q
N⋆

δ ,γ
y

semantics(C_Star {..})
JN !δ tK semantics(C_Split {..})t
∥
δ

N←L

N
|

semantics(C_Par {..})

thesis April 1, 2010 14:45 Page 157 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

157

A
p
p
e
n
d
ix

C
–
L
it
e
r
a
t
e
p
r
o
g
r
a
m
m
in
g
su
b
st
it
u
t
io
n
s

thesis April 1, 2010 14:45 Page 158 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

thesis April 1, 2010 14:45 Page 159 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Acronyms

alu Arithmetic and Logic Unit.

ap Assignment Problem.

asic Application Specific Integrated Circuit.

cmos Complementary Metal-Oxide-Semiconductor.

crisp Cutting edge Reconfigurable ICs for Stream Processing.

ddr Double Data Rate.

dfg dataflow graph.

dma Direct Memory Access.

dsp Digital Signal Processing.

elr Early Latency Response.

ff First Fit.

ffc First Fit with Clustering.

fifo First-In First-Out.

fpga Field Programmable Gate Array.

fpm Fast Page Mode.

gap Generalized Assignment Problem.

gpd General Purpose Device.

gpp General Purpose Processor.

hpc High Performance Computing.

HwE Hardware Element.

ic Integrated Circuit.

ilp Integer Linear Program.

ip Intellectual Property.

llr Late Latency Response.

mimo Multiple Input Multiple Output.

mmac Million Multiply Accumulate.

mmkp Multi-dimensional Multi-choice Knapsack Problem.

mp Manager Processor.

MPSoC Multi-Processor System-on-Chip.

thesis April 1, 2010 14:45 Page 160 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

160

A
c
r
o
n
y
m
s

nmos N-type Metal-Oxide-Semiconductor.

NoC Network-on-Chip.

os Operating System.

pcb Printed Circuit Board.

pe Processing Element.

ProcFS Process File System.

QoS Quality of Service.

rfd Reconfigurable Device.

rsrm Run-time Spatial Resource Management.

scc Single-chip Cloud Computer.

sdf Synchronous Data Flow.

simd Single Instruction Multiple Data.

SiP System in Package.

siso Single Input Single Output.

soi Silicon-On-Insulator.

tdma Time Division Multiple Access.

ucs Uniform Cost Search.

vap Vector Assignment Problem.

vt Virtual Tile.

thesis April 1, 2010 14:45 Page 161 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

Bibliography

[1] ibm ilog cplex. URL http://www-01.ibm.com/software/integration/
optimization/cplex/.

[2] Haskell :: Functional programming with types. URL http://en.wikibooks.org/
wiki/Haskell.

[3] Low-Power Domain-Specific Processors for Digital Signal Processing. PhD thesis, Uni-

versity of California, Berkeley, 2001.

[4] Coarse-Grained Reconfigurable Processors – Flexibility meets Efficiency. PhD thesis,

University of Twente, Enschede, The Netherlands, sep 2004.

[5] Apple. Mac OS X ABI mach-O file format reference on-line developer documen-

tation, February 2009. URL http://developer.apple.com/documentation/
DeveloperTools/Conceptual/MachORuntime/Mach-O_File_Format.pdf.

[6] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,

Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John

Shalf, Samuel Webb Williams, and Katherine A. Yelick. The landscape of parallel

computing research: A view from berkeley. Technical Report UCB/EECS-2006-

183, EECS Department, University of California, Berkeley, Dec 2006. URL http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html.

[7] J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L. Herrick, R. A.

Nelson, D. Sayre, P. B. Sheridan, H. Stern, I. Ziller, R. A. Hughes, and R. Nutt. The

fortran automatic coding system. In IRE-AIEE-ACM ’57 (Western): Papers presented
at the February 26-28, 1957, western joint computer conference: Techniques for reliability,
pages 188–198, New York, NY, USA, 1957. ACM. doi: http://doi.acm.org/10.1145/

1455567.1455599.

[8] K. Baynes, C. Collins, E. Fiterman, Brinda Ganesh, P. Kohout, C. Smit, T. Zhang, and

B. Jacob. The performance and energy consumption of embedded real-time operating

systems. Computers, IEEE Transactions on, 52(11):1454–1469, November 2003. ISSN

0018-9340. doi: 10.1109/TC.2003.1244943.

[9] R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87–90,
1958.

[10] Luca Benini and Giovanni De Micheli. Networks on chips: A new soc paradigm.

Computer, 35(1):70–78, 2002. ISSN 0018-9162. doi: http://dx.doi.org/10.1109/2.976921.

http://www-01.ibm.com/software/integration/optimization/cplex/
http://www-01.ibm.com/software/integration/optimization/cplex/
http://en.wikibooks.org/wiki/Haskell
http://en.wikibooks.org/wiki/Haskell
http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/Mach-O_File_Format.pdf
http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/Mach-O_File_Format.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

thesis April 1, 2010 14:45 Page 162 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

162

B
ib
l
io
g
r
a
p
h
y

[11] Gérard Berry and Georges Gonthier. The Esterel synchronous programming lan-

guage: design, semantics, implementation. Science of Computer Programming, 19(2):
87–152, November 1992.

[12] Tjerk Bijlsma,,MarcoBekooij,, Pierre Jansen,, andGerard J.M. Smit,. Communication

between nested loop programs via circular buffers in an embedded multiprocessor

system. In SCOPES ’08: Proceedings of the 11th international workshop on Software &
compilers for embedded systems, pages 33–42, 2008.

[13] J Binder. Safety-critical software for aerospace systems. Aerospace America, pages
26–27, August 2004.

[14] StephenBoyd and LievenVandenberghe. ConvexOptimization. CambridgeUniversity

Press, March 2004. ISBN 0521833783. doi: 10.2277/0521833787.

[15] Timon ter Braak and Philip Kaj Ferdinand Hölzenspies. Kairos osrm, January 2010.

URL http://www.kairos-osrm.com/.

[16] Giorgio C. Buttazzo. Hard Real-Time Computing Systems.

[17] Haoxan Cai, Susan Eisenbach, Alex Shafarenko, and Clemens Grelck. Extending the

S-Net Type System. In Proceedings of the Æther-Morpheus Workshop From Reconfig-
urable to Self-Adaptive Computing (AMWAS’07), Paris, France, 2007.

[18] Ewerson Carvalho, Ney Calazans, and Fernando Moraes. Heuristics for dynamic

task mapping in noC-based heterogeneous MPSocs. In RSP ’07: Proceedings of the
18th IEEE/IFIP International Workshop on Rapid System Prototyping, pages 34–40,
Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2834-1. doi:

http://dx.doi.org/10.1109/RSP.2007.26.

[19] Chen-Ling Chou and Radu Marculescu. Incremental run-time application mapping

for homogeneous nocswithmultiple voltage levels. InCODES+ISSS ’07: Proceedings of
the 5th IEEE/ACM international conference on Hardware/software codesign and system
synthesis, pages 161–166, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-824-4.

doi: http://doi.acm.org/10.1145/1289816.1289857.

[20] Reuven Cohen, Liran Katzir, and Danny Raz. An efficient approximation for the

generalized assignment problem. Inf. Process. Lett., 100(4):162–166, 2006. ISSN

0020-0190. doi: http://dx.doi.org/10.1016/j.ipl.2006.06.003.

[21] Tilera Corporation. Tile64™ processor product brief. Corporate product brief, 2008.

URL http://www.tilera.com/pdf/ProBrief_Tile64_Web.pdf.

[22] William James Dally and Brian Towles. Principles and Practices of Interconnection
Networks. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003. ISBN

0-12-200751-4.

[23] William James Dally, Ujval J. Kapasi, Brucek Khailany, Jung Ho Ahn, and Abhishek

Das. Stream processors: Progammability and efficiency. Queue, 2(1):52–62, 2004. doi:
10.1145/984458.984486.

http://www.kairos-osrm.com/
http://www.tilera.com/pdf/ProBrief_Tile64_Web.pdf

thesis April 1, 2010 14:45 Page 163 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

163

B
ib
l
io
g
r
a
p
h
y

[24] Giovanni deMicheli and Luca Benini. Networks on chip: A new paradigm for systems

on chip design. In DATE ’02: Proceedings of the conference on Design, automation and
test in Europe, page 418, Washington, DC, USA, 2002. IEEE Computer Society.

[25] Rina Dechter, and Judea Pearl,. Generalized best-first search strategies and the

optimality of A*. J. ACM, 32(3):505–536, 1985. ISSN 0004-5411. doi: http://doi.acm.

org/10.1145/3828.3830.

[26] Advanced Micro Devices. Live migration with ADM-V extended migration tech-

nology. White paper, March 2008. URL http://developer.amd.com/assets/
LiveVirtualMachineMigrationonAMDprocessors.pdf.

[27] Robert P. Dick, David L. Rhodes, and Wayne Wolf. TGFF: task graphs for free. In

CODES/CASHE ’98: Proceedings of the 6th international workshop on Hardware/soft-
ware codesign, pages 97–101, Washington, DC, USA, 1998. IEEE Computer Society.

ISBN 0-8186-8442-9.

[28] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, December 1959. ISSN 0029-599X. doi: 10.1007/BF01386390.

URL http://dx.doi.org/10.1007/BF01386390.

[29] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, December 1959. doi: 10.1007/BF01386390. URL http:
//dx.doi.org/10.1007/BF01386390.

[30] Broadband Radio Access Networks (BRAN); HiperLAN type 2; Physical (PHY) layer,
ETSI TS 101 475 v1.2.2 (2001-02), 2001. ETSI.

[31] Mohammad Abdullah Al Faruque, Rudolf Krist, and Jörg Henkel. ADAM: run-

time agent-based distributed application mapping for on-chip communication. In

DAC ’08: Proceedings of the 45th annual conference on Design automation, pages
760–765, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-115-6. doi: http:

//doi.acm.org/10.1145/1391469.1391664.

[32] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, 1962. ISSN

0001-0782. doi: http://doi.acm.org/10.1145/367766.368168.

[33] A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, A. J. M. Moonen, M. J. G.

Bekooij, B. D. Theelen, and M. R. Mousavi. Throughput analysis of synchronous

data flow graphs. Application of Concurrency to System Design, 2006. ACSD 2006.
Sixth International Conference on, pages 25–36, June 2006. ISSN 1550-4808. doi:

10.1109/ACSD.2006.33.

[34] A. H. Ghamarian, S. Stuijk, T. Basten, M. C. W. Geilen, and B. D. Theelen. Latency

minimization for synchronous data flow graphs. Digital System Design Architectures,
Methods and Tools, 2007. DSD 2007. 10th Euromicro Conference on, pages 189–196,
August 2007. doi: 10.1109/DSD.2007.4341468.

[35] Kees Goossens, John Dielissen, and Andrei Radulescu. æthereal network on chip:

Concepts, architectures, and implementations. IEEE Des. Test, 22(5):414–421, 2005.
ISSN 0740-7475. doi: http://dx.doi.org/10.1109/MDT.2005.99.

http://developer.amd.com/assets/Live Virtual Machine Migration on AMD processors.pdf
http://developer.amd.com/assets/Live Virtual Machine Migration on AMD processors.pdf
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1007/BF01386390

thesis April 1, 2010 14:45 Page 164 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

164

B
ib
l
io
g
r
a
p
h
y

[36] C. Grelck and F. Penczek. Implementation Architecture and Multithreaded Runtime

System of S-Net. In S.B. Scholz and O. Chitil, editors, Implementation and Application
of Functional Languages, 20th International Symposium, IFL’08, Hatfield, United King-
dom, Revised Selected Papers, Lecture Notes in Computer Science. Springer-Verlag,

2009. to appear.

[37] Clemens Grelck, Sven-Bodo Scholz, and Alex Shafarenko. A Gentle Introduction

to S-Net: Typed Stream Processing and Declarative Coordination of Asynchronous

Components. Parallel Processing Letters, 18(2):221–237, 2008.

[38] Clemens Grelck, Jukka Julku, and Frank Penczek. Distributed S-Net. In M. Morazan,

editor, Implementation and Application of Functional Languages, 21st International
Symposium, IFL’09, South Orange, NJ, USA. Seton Hall University, 2009.

[39] VenkatesanGuruswami, SanjeevKhanna, RajmohanRajaraman, Bruce Shepherd, and

Mihalis Yannakakis. Near-optimal hardness results and approximation algorithms for

edge-disjoint paths and related problems. In STOC ’99: Proceedings of the thirty-first
annual ACM symposium on Theory of computing, pages 19–28, New York, NY, USA,

1999. ACM. ISBN 1-58113-067-8. doi: http://doi.acm.org/10.1145/301250.301262.

[40] A. Hansson and K. Goossens. Trade-offs in the configuration of a network on chip for

multiple use-cases.Networks-on-Chip, 2007. NOCS 2007. First International Symposium
on, pages 233–242, May 2007. doi: 10.1109/NOCS.2007.45.

[41] Andreas Hansson, Kees Goossens, and Andrei Rǎdulescu. A unified approach to con-

strained mapping and routing on network-on-chip architectures. In CODES+ISSS ’05:
Proceedings of the 3rd IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, pages 75–80, New York, NY, USA, 2005. ACM. ISBN

1-59593-161-9. doi: http://doi.acm.org/10.1145/1084834.1084857.

[42] Andreas Hansson, Maarten Wiggers, Arno Moonen, Kees Goossens, and Marco

Bekooij. Applying dataflow analysis to dimension buffers for guaranteed performance

in networks on chip. In NOCS ’08: Proceedings of the Second ACM/IEEE International
Symposium on Networks-on-Chip, pages 211–212, Washington, DC, USA, 2008. IEEE

Computer Society. ISBN 978-0-7695-3098-7.

[43] Andreas Hansson, Kees Goossens, Marco Bekooij, and Jos Huisken. CoMPSoC: A

template for composable and predictable multi-processor system on chips. ACM
Trans. Des. Autom. Electron. Syst., 14(1):1–24, 2009. ISSN 1084-4309. doi: http:

//doi.acm.org/10.1145/1455229.1455231.

[44] Andreas Hansson, Maarten Wiggers, Arno Moonen, Kees Goossens, and Marco

Bekooij. Enabling application-level performance guarantees in network-based sys-

tems on chip by applying dataflow analysis. IET Computers & Digital Techniques,
2009.

[45] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic determination

of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions on, 4(2):
100–107, July 1968. ISSN 0536-1567. doi: 10.1109/TSSC.1968.300136.

[46] Gernot Heiser. The role of virtualization in embedded systems. In 1st Workshop on
Isolation and Integration in Embedded Systems, pages 11–16, Glasgow, UK, Apr 2008.
ACM SIGOPS. doi: 10.1145/1435458.

thesis April 1, 2010 14:45 Page 165 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

165

B
ib
l
io
g
r
a
p
h
y

[47] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive scheduling of period

and sporadic tasks. Real-Time Systems Symposium, 1991. Proceedings., Twelfth, pages
129–139, December 1991. doi: 10.1109/REAL.1991.160366.

[48] Werner B. Joerg. A subclass of petri nets as design abstraction for parallel architectures.

SIGARCH Comput. Archit. News, 18(4):67–77, 1990. ISSN 0163-5964. doi: http:

//doi.acm.org/10.1145/121973.121982.

[49] James A. Kahle, Michael N. Day, H. Peter Hofstee, Charles R. Johns, Theodore R.

Maeurer, and David Shippy. Introduction to the cell multiprocessor. IBM Journal of
Research and Development, 49(4/5):589–604, July/September 2005.

[50] GKahn. The semantics of a simple language for parallel programming. In L Rosenfeld,

editor, Information Processing 74, Proc. IFIP Congress 74. August 5-10, Stockholm,
Sweden, pages 471–475. North-Holland, 1974.

[51] D. I. Kang,, J. Suh,, O. McMahon,, and S. Crago,. Preliminary study towards intelli-

gent run-time resource management techniques for large multi-core architectures.

Technical report, University of Southern California – Information Sciences Institute,

September 2007. High-Performance Computing Workshop.

[52] N. K. Kavaldjiev. A run-time reconfigurable Network-on-Chip for streaming DSP
applications. PhD thesis, University of Twente, Enschede, January 2007.

[53] N. K. Kavaldjiev, G. J. M. Smit, and P. G. Jansen. A virtual channel router for on-

chip networks. In IEEE Int. SOC Conf., Santa Clara, California, pages 289–293, Los
Alamitos, California, September 2004. IEEE Computer Society. ISBN 0-7803-8445-8.

[54] Nikolay Kavaldjiev, Gerard J. M. Smit, Pascal T. Wolkotte, and Pierre G. Jansen.

Providing qoS guarantees in a noC by virtual channel reservation. In ARC, pages
299–310, 2006.

[55] Jong-Kook Kim, Sameer Shivle, Howard Jay Siegel, Anthony A. Maciejewski, Tracy D.

Braun, Myron Schneider, Sonja Tideman, Ramakrishna Chitta, Raheleh B. Dil-

maghani, Rohit Joshi, Aditya Kaul, Ashish Sharma, Siddhartha Sripada, Praveen

Vangari, and Siva Sankar Yellampalli. Dynamic mapping in a heterogeneous environ-

ment with tasks having priorities and multiple deadlines. In IPDPS ’03: Proceedings
of the 17th International Symposium on Parallel and Distributed Processing, page 98.1,
Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1926-1.

[56] Reiner Kolisch, Arno Sprecher, and Andreas Drexl. Management Science, 41(10):1693–
1703, 1995. ISSN 00251909. URL http://www.jstor.org/stable/2632747.

[57] Oscar J. Kuiken,, Xiao Zhang,, and Hans G. Kerkhoff,. Built-in self-diagnostics for a

noC-based reconfigurable IC for dependable beamforming applications. In DFT ’08:
Proceedings of the 2008 IEEE International Symposium on Defect and Fault Tolerance
of VLSI Systems, pages 45–53, Washington, DC, USA, 2008. IEEE Computer Society.

ISBN 978-0-7695-3365-0. doi: http://dx.doi.org/10.1109/DFT.2008.24.

[58] A. Kumar, B. Mesman, B. Theelen, H. Corporaal, and H. Yajun. Resource manager

for non-preemptive heterogeneous multiprocessor system-on-chip. In ESTMED ’06:
Proceedings of the 2006 IEEE/ACM/IFIPWorkshop on Embedded Systems for Real Time

http://www.jstor.org/stable/2632747

thesis April 1, 2010 14:45 Page 166 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

166

B
ib
l
io
g
r
a
p
h
y

Multimedia, pages 33–38, Washington, DC, USA, 2006. IEEE Computer Society. ISBN

0-7803-9783-5. doi: http://dx.doi.org/10.1109/ESTMED.2006.321271.

[59] Chris Lattner andVikramAdve. Llvm: A compilation framework for lifelong program

analysis & transformation. In CGO ’04: Proceedings of the international symposium
on Code generation and optimization, page 75, Washington, DC, USA, 2004. IEEE

Computer Society. ISBN 0-7695-2102-9.

[60] Harold Lawson and Howard Bromberg. The world’s first cobol compilers.

transcript at http://www.computerhistory.org/events/lectures/cobol_
06121997/, 1997.

[61] E.A. Lee and D.G. Messerschmitt. Synchronous dataflow. In Proceedings of the IEEE,
volume 75(9), pages 1235 – 1245, September 1987.

[62] Edward A. Lee and Thomas M. Parks. Dataflow process networks. pages 59–85, 2002.

[63] Anany Levitin,. Do we teach the right algorithm design techniques? SIGCSE Bull., 31
(1):179–183, 1999. ISSN 0097-8418. doi: http://doi.acm.org/10.1145/384266.299747.

[64] Keqin Li and KamHoi Cheng. A two dimensional buddy system for dynamic resource

allocation in a partitionable mesh connected system. In CSC ’90: Proceedings of the
1990 ACM annual conference on Cooperation, pages 22–27, New York, NY, USA, 1990.

ACM. ISBN 0-89791-348-5. doi: http://doi.acm.org/10.1145/100348.100352.

[65] César Marcon, André Borin, Altamiro Susin, Luigi Carro, and Flávio Wagner. Time

and energy efficient mapping of embedded applications onto nocs. In ASP-DAC
’05: Proceedings of the 2005 conference on Asia South Pacific design automation, pages
33–38, New York, NY, USA, 2005. ACM. ISBN 0-7803-8737-6. doi: http://doi.acm.

org/10.1145/1120725.1120738.

[66] Théodore Marescaux and Henk Corporaal. Introducing the supergt network-on-

chip: Supergt qos: more than just gt. In DAC ’07: Proceedings of the 44th annual
Design Automation Conference, pages 116–121, New York, NY, USA, 2007. ACM. ISBN

978-1-59593-627-1. doi: http://doi.acm.org/10.1145/1278480.1278510.

[67] Silvano Martello, and Paolo Toth,. Knapsack problems: algorithms and computer
implementations. John Wiley & Sons, Inc., New York, NY, USA, 1990. ISBN 0-471-

92420-2.

[68] Orlando Moreira, Jacob Jan-David Mol, and Marco Bekooij. Online resource man-

agement in a multiprocessor with a network-on-chip. In SAC ’07: Proceedings of the
2007 ACM symposium on Applied computing, pages 1557–1564, New York, NY, USA,

2007. ACM. ISBN 1-59593-480-4. doi: http://doi.acm.org/10.1145/1244002.1244335.

[69] OrlandoM.Moreira, andMarco J. G. Bekooij,. Self-timed scheduling analysis for real-

time applications. In EURASIP Journal on Advances in Signal Processing, volume 2007,

pages 24–37. Hindawi Publishing Corporation, April 2007. doi: doi:10.1155/2007/83710.

[70] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose, C. Zissulescu,

and E. Deprettere. Daedalus: Toward composable multimediaMP-soC design. Design
Automation Conference, 2008. DAC 2008. 45th ACM/IEEE, pages 574–579, June 2008.
ISSN 0738-100X.

http://www.computerhistory.org/events/lectures/cobol_06121997/
http://www.computerhistory.org/events/lectures/cobol_06121997/

thesis April 1, 2010 14:45 Page 167 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

167

B
ib
l
io
g
r
a
p
h
y

[71] V. Nollet, P. Avasare, J-Y. Mignolet, and D. Verkest. Low cost task migration initiation

in a heterogeneous MP-soC. In DATE ’05: Proceedings of the conference on Design,
Automation and Test in Europe, pages 252–253, Washington, DC, USA, 2005. IEEE

Computer Society. ISBN 0-7695-2288-2. doi: http://dx.doi.org/10.1109/DATE.2005.

201.

[72] V. Nollet, T. Marescaux, P. Avasare, and J-Y. Mignolet. Centralized run-time resource

management in a network-on-chip containing reconfigurable hardware tiles. InDATE
’05: Proceedings of the conference on Design, Automation and Test in Europe, pages
234–239, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2288-2.

doi: http://dx.doi.org/10.1109/DATE.2005.91.

[73] Zeev Nutov, Israel Beniaminy, and Raphael Yuster. A (1-1/ε)-approximation algorithm

for the generalized assignment problem. Oper. Res. Lett., 34(3):283–288, 2006.

[74] Members of the FreeBSD Documentation Project. FreeBSD Handbook. Dancing Goat
Press, 2 edition, November 2001. ISBN 1-57176-303-1.

[75] T. Ojanpera and R. Prasad. An overview of air interface multiple access for imt-

2000/umts. IEEE Communications Magazine, 36(9):82–95, September 1998.

[76] Frank Penczek. Design and Implementation of a Multithreaded Runtime System

for the Stream Processing Language S-Net. Master’s thesis, Institute of Software

Technology and Programming Languages, University of Lübeck, Germany, 2007.

[77] Carl Adam Petri. Kommunikation mit Automaten. Bonn: Institut für Instrumentelle

Mathematik, Schriften des IIM Nr. 2, 1962.

[78] Carl AdamPetri. Concurrency as a Basis of SystemsThinking. St. Augustin: Gesellschaft
fürMathematik undDatenverarbeitung Bonn, Interner Bericht ISF-78–06, September

1978.

[79] Simon Peyton Jones. Haskell 98 Language and Libraries: the Revised Report. 2003.

[80] Recore Systems BV. CRISP - cutting edge reconfigurable ICs for stream processing,

February 2008. URL http://www.crisp-project.eu. FP7-ICT-215881.

[81] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson
Education, 2003. ISBN 0137903952. URL http://portal.acm.org/citation.
cfm?id=773294.

[82] Intel Tera scale Computing Research Program. Single-chip cloud computer informa-

tion page. URL http://techresearch.intel.com/articles/Tera-Scale/
1826.htm.

[83] Dana Scott and Christopher Strachey. Toward amathematical semantics for computer

languages. Programming Research Group Technical Monograph PRG-6, Oxford

Univ. Computing Lab., 1971.

[84] Merrill I. Skolnik. Introduction to Radar Systems. McGraw-Hill, New York, NY, USA,

third edition, 2001. ISBN 0-07-288138-0. URL http://www.mhprofessional.
com/product.php?isbn=0072881380.

http://www.crisp-project.eu
http://portal.acm.org/citation.cfm?id=773294
http://portal.acm.org/citation.cfm?id=773294
http://techresearch.intel.com/articles/Tera-Scale/1826.htm
http://techresearch.intel.com/articles/Tera-Scale/1826.htm
http://www.mhprofessional.com/product.php?isbn=0072881380
http://www.mhprofessional.com/product.php?isbn=0072881380

thesis April 1, 2010 14:45 Page 168 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

168

B
ib
l
io
g
r
a
p
h
y

[85] G. J. M. Smit, A. B. J. Kokkeler, P. T. Wolkotte, and M. D. van de Burgwal. Multi-

core architectures and streaming applications. In I. Mandoiu and A. Kennings,

editors, Proceedings of the Tenth International Workshop on System-Level Interconnect
Prediction (SLIP 2008), Newcastle, UK, pages 35–42, New York, NY, USA, April 2008.

ACM.

[86] SNet. SNet declarative coordination language, 2008. URL http://www.
snet-home.org/.

[87] K. Srinivasan and K. S. Chatha. A technique for low energy mapping and routing

in network-on-chip architectures. Low Power miscs and Design, 2005. ISLPED ’05.
Proceedings of the 2005 International Symposium on, pages 387–392, August 2005.

[88] John A. Stankovic. Misconceptions about real-time computing: A serious problem

for next-generation systems. Computer, 21(10):10–19, 1988. ISSN 0018-9162. doi:

http://dx.doi.org/10.1109/2.7053.

[89] Ralph Steuer. Multiple Criteria Optimization: Theory, Computation, and Application.
Krieger Publishing Company, January 1986.

[90] Dimitrios Stiliadis and Anujan Varma. Latency-rate servers: a general model for

analysis of traffic scheduling algorithms. IEEE/ACM Transactions on Networking, 6
(5):611–624, 1998. ISSN 1063-6692. doi: 10.1109/90.731196.

[91] Dimitrios Stiliadis and Anujan Varma. Latency-rate servers: a general model for

analysis of traffic scheduling algorithms. IEEE/ACM Trans. Netw., 6(5):611–624, 1998.
ISSN 1063-6692. doi: http://dx.doi.org/10.1109/90.731196.

[92] Christopher Strachey and Christopher P. Wadsworth. Continuations: A mathemat-

ical semantics for handling full jumps. Programming Research Group Technical

Monograph PRG-11, Oxford Univ. Computing Lab., 1974. Reprinted in Higher-Order
and Symbolic Computation, vol. 13 (2000), pp. 135–152.

[93] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in

software. Dr. Dobb’s Journal, 30(3):202–210, 2005. URL http://www.gotw.ca/
publications/concurrency-ddj.htm.

[94] top500 project. The 34
th
top500 list, Nov 2009. URL www.top500.org.

[95] Franco Travostino, Paul Daspit, Leon Gommans, Chetan Jog, Cees de Laat, Joe

Mambretti, Inder Monga, Bas van Oudenaarde, Satish Raghunath, and Phil Yonghui

Wang. Seamless live migration of virtual machines over the man/wan. Future Gener.
Comput. Syst., 22(8):901–907, 2006. ISSN 0167-739X. doi: http://dx.doi.org/10.1016/j.

future.2006.03.007.

[96] A. van Wijngaarden. Recursive definition of syntax and semantics. In Formal Lan-
guage Description Languages for Computer Programming. Proceedings of the IFIP
Working Conference on Formal Language Description Languages., pages 13–24, Ams-

terdam, 1966. North-Holland Publishing Company.

http://www.snet-home.org/
http://www.snet-home.org/
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
www.top500.org

thesis April 1, 2010 14:45 Page 169 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

169

B
ib
l
io
g
r
a
p
h
y

[97] Sriram Vangal, James Howard, Gregory Ruhl, Saurabh Dighe, Howard Wilson, James

Tschanz, David Finan, Priya Iyer, Arvind Singh, Tiju Jacob, Shailendra Jain, Sriram

Venkataraman, Yatin Hoskote, and Nitin Borkar. An 80-tile 1.28 tflops network-on-

chip in 65nm cmos. In Proceedings of the International Solid State Circuits Conference.
IEEE, IEEE, February 2007.

[98] Sven Verdoolaege, Hristo Nikolov, and Todor Stefanov. pn: a tool for improved

derivation of process networks. EURASIP J. Embedded Syst., 2007(1):19–19, 2007.
ISSN 1687-3955. doi: http://dx.doi.org/10.1155/2007/75947.

[99] VMware. VMware VMontion and CPU compatibility. Information Guide, June 2008.

URL http://www.vmware.com/files/pdf/vmotion_info_guide.pdf.

[100] W. Warner. Great moments in microprocessor history, the history of the micro

from the vacuum tube to today’s dual-core multithreaded madness, Dec 2004. URL

http://www.ibm.com/developerworks/library/pa-microhist.html.

[101] M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit. Computation of buffer capacities

for throughput constrained and data dependent inter-task communication. In Design
Automation and Test in Europe, Munich, pages 640–645, San Jose, CA, USA, March

2008. EDA Consortium.

[102] M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit. Buffer capacity computation

for throughput constrained streaming applications with data-dependent inter-task

communication. In Proceedings of the 14th IEEE Real-Time and Embedded Technology
and Applications Symposium, RTAS’08, St. Louis, MO, United States, pages 183–194,
Los Alamitos, April 2008. IEEE Computer Society Press.

[103] MaartenH.Wiggers,,Marco J. G. Bekooij,, andGerard J.M. Smit,. Modelling run-time

arbitration by latency-rate servers in dataflow graphs. In SCOPES ’07: Proceedingsof
the 10th international workshop on Software& compilers for embedded systems, pages 11–
22, New York, NY, USA, 2007. ACM. doi: http://doi.acm.org/10.1145/1269843.1269846.

[104] Maarten Hendrik Wiggers. Aperiodic multiprocessor scheduling for real-time stream
processing applications. PhD thesis, University of Twente, Enschede, June 2009. URL

http://doc.utwente.nl/61568/.

[105] P. T. Wolkotte, G. J. M. Smit, N. Kavaldjiev, J. E. Becker, and J. Becker. Energy model

of networks-on-chip and a bus. System-on-Chip, 2005. Proceedings. 2005 International
Symposium on, pages 82–85, November 2005. doi: 10.1109/ISSOC.2005.1595650.

[106] Pascal T. Wolkotte,. Exploration within the Network-on-Chip Paradigm. PhD thesis,

University of Twente, 2009.

[107] Ch. Ykman-Couvreur, V. Nollet, Fr. Catthoor, and H. Corporaal. Fast multi-

dimension multi-choice knapsack heuristic for MP-soC run-time management.

System-on-Chip, 2006. International Symposium on, pages 1–4, November 2006. doi:

10.1109/ISSOC.2006.321966.

[108] Ch. Ykman-Couvreur, V. Nollet, Th. Marescaux, E. Brockmeyer, Fr. Catthoor, and

H. Corporaal. Design-time application mapping and platform exploration for MP-

soC customised run-time management. Computers & Digital Techniques, IET, 1(2):
120–128, March 2007. ISSN 1751-8601. doi: 10.1049/iet-cdt:20060031.

http://www.vmware.com/files/pdf/vmotion_info_guide.pdf
http://www.ibm.com/developerworks/library/pa-microhist.html
http://doc.utwente.nl/61568/

pub April 1, 2010 14:45 Page 170 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

170

B
ib
l
io
g
r
a
p
h
y

[109] Kun Zhang, and Santosh Pande,. Minimizing downtime in seamless migrations of

mobile applications. In LCTES ’06: Proceedings of the 2006 ACM SIGPLAN/SIGBED
conference on Language, compilers, and tool support for embedded systems, pages 12–21,
New York, NY, USA, 2006. ACM. ISBN 1-59593-362-X. doi: http://doi.acm.org/10.

1145/1134650.1134654.

[110] X. Zhang and H. G. Kerkhoff. Design of a highly dependable beamforming chip. In

X. Zhang, editor, Proceedings of Euromicro on Digital System Design (DSD09), Patras,
Greece, pages 729–735, Los Alamitos, CA, USA, August 2009. IEEE Computer Society

Press.

pub April 1, 2010 14:45 Page 171 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

List of Publications

[PhH:1] C. Grelck, Shafarenko, A. (eds):, F. Penczek, C. Grelck, H. Cai, J. Julku, P. Hölzen-

spies, Scholz, S.B., and A. Shafarenko. S-Net Language Report 1.0. Technical

Report 487, University of Hertfordshire, School of Computer Science, Hatfield,

England, United Kingdom, 2009.

[PhH:2] P. K. F. Hölzenspies, J. Kuper, G. J. M. Smit, and J. L. Hurink. Demonstration

of run-time spatial mapping of streaming applications to a heterogeneous multi-

processor system-on-chip (mpsoc). In B. R. H. M. Haverkort, J. P. Katoen, and

L. Thiele, editors,Dagstuhl Seminar Proceedings 07101, DagstuhlWadern, Germany,
volume 07101, Dagstuhl, Germany, October 2007. Internationales Begegnungs-

und Forschungszentrum für Informatik (IBFI).

[PhH:3] P. K. F. Hölzenspies, J. L. Hurink, J. Kuper, and G. J. M. Smit. Run-time spatial

mapping of streaming applications to a heterogeneous multi-processor system-on-

chip (mpsoc). In Proceedings of the Eleventh Conference on Design, Automation
and Test in Europe, DATE08, Munich, Germany, pages 212–217. European Design

and Automation Association, March 2008.

[PhH:4] Philip Hölzenspies, Timon ter Braak, Jan Kuper, Gerard Smit, and Johann

Hurink. Run-time spatial mapping of streaming applications to heterogeneous

multi-processor systems. International Journal of Parallel Programming. doi:

10.1007/s10766-009-0120-y.

[PhH:5] P.K.F. Hölzenspies, G.J.M. Smit, and J. Kuper. Mapping streaming applications

on a reconfigurable mpsoc platform at run-time. In Proceedings of the Interna-
tional Symposium on System-on-Chip (SoC 2007) [Best paper award], pages 74–77,
Tampere, Finland, November 2007. IEEE Circuits and Systems Society. ISBN

1-4244-1367-2.

[PhH:6] A. B. J. Kokkeler, G. K. Rauwerda, P. T.Wolkotte, Q. Zhang, P. K. F.Hölzenspies, and

G. J. M. Smit. Reconfigurable baseband processing for wireless communications.

In M. Ibnkahla, editor, Adaptive Signal Processing in Wireless Communications
(Adaptation in Wireless Communications), pages 443–478. CRC Press, Boca Raton,

Florida, US, 2009. ISBN 1-420-04601-2.

[PhH:7] G. J. M. Smit, A. B. J. Kokkeler, P. T. Wolkotte, P. K. F. Hölzenspies, M. D. van de

Burgwal, and P. M. Heysters. The chameleon architecture for streaming dsp

applications. EURASIP Journal on Embedded Systems, 2007:78082, 2007. ISSN
1687-3955.

thesis April 1, 2010 14:45 Page 172 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

172

L
ist

o
f
P
u
b
l
ic
a
t
io
n
s

[PhH:8] Timon D. ter Braak, Philip K.F. Hölzenspies, Jan Kuper, Johann L. Hurink, and

Gerard J.M. Smit. Run-time spatial resource management for real-time applica-

tions on heterogeneous mpsocs. In Proceedings of the Thirteenth Conference on
Design, Automation and Test in Europe, DATE10, Dresden, Germany. European
Design and Automation Association, March 2010.

[PhH:9] Jeyarajan Thiyagalingam, Philip Hölzenspies, Sven-Bodo Scholz, and Alex Sha-

farenko. A Stream-Order Relaxed Execution Model forAsynchronous Stream

Languages. In Sven-Bodo Scholz, editor, Implementation and Application of Func-
tional Languages, 20th international symposium, IFL’08, Hatfield, Hertfordshire,
UK, Technical Report 474, pages 316–329. University of Hertfordshire, England,
UK, 2008.

[PhH:10] P. T. Wolkotte, P. K. F. Hölzenspies, and G. J. M. Smit. Using an fpga for fast bit

accurate soc simulation. In Proceedings of the 21th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’07) - 14th Reconfigurable Architec-
ture Workshop (RAW 2007), Long Beach, CA, USA, number 07TH8938, page 167,

Piscataway, March 2007. IEEE Computer Society Press. ISBN 1-4244-0910-1.

[PhH:11] P. T. Wolkotte, P. K. F. Hölzenspies, and G. J. M. Smit. Fast, accurate and detailed

noc simulations. In P. Kellenberger, editor, Proceedings of the 1st ACM/IEEE
International Symposium on Networks-on-Chip, Princeton, NJ, USA, number P2773,

pages 323–332, Los Alamitos, May 2007. IEEE Computer Society Press. ISBN

0-7695-2773-6.

[PhH:12] P. T. Wolkotte, J. H. Rutgers, P. K. F. Hölzenspies, M. Westmijze, R. Blumink, and

G. J. M. Smit. An automated design-flow for fpga-based sequential simulation. In

Proceedings of the 19th Annual Workshop on Circuits, Systems and Signal Processing
(ProRISC), Veldhoven, The Netherlands, number 2008/14935/STW, pages 126–132,

Utrecht, November 2008. STW.

	Introduction
	A truly new era for programmers
	Approach and contributions of the thesis
	On-line spatial resource management
	Coordination language SNet
	Structure of the thesis

	Synchronous Dataflow
	State-of-the-Art
	Introduction
	Prerequisites for on-line spatial resource management
	Subproblems
	Validation
	Optimization criteria
	Conclusion

	On-line spatial resource management
	Structural Definitions
	Resources: Capacities & Requirements
	Constraints and cost
	Proposed heuristic approach
	Conclusion

	Kairos: an osrm implementation
	Binding
	Mapping
	Routing
	Validation
	Implementation: Kairos
	Conclusion

	osrm exploration
	Case study: Beamformer
	Synthetic benchmarks
	Conclusion

	Asynchronous Dataflow
	Denotational semantics of SNet
	Motivation
	A brief overview of SNet
	Purpose and approach
	Data structures and utilities
	Semantics
	Prefix monotonicity
	Conclusion

	Hydra: an SNet implementation
	Motivation
	Approach
	Compilation scheme & run-time system
	No introduction of non-termination
	Conclusion

	Conclusions & recommendations
	On-line spatial resource management
	SNet

	Benchmark results
	Kairos configurations
	Run-times

	Structure definitions for SNet
	Core representation of SNet
	Expressions and patterns
	Network indices

	Literate programming substitutions
	Basic Haskell syntax
	Indices and oracles
	SNet types & values and their operators
	Types for program representation
	Semantics

	Acronyms
	Bibliography
	List of Publications

